'Vascular endothelial growth factor-A (VEGF-A) blockade has been recently validated as an effective strategy for the inhibition of new blood vessel growth in cancer and ocular pathologies. However, several studies have also shown that anti-VEGF therapy may not be as effective in the treatment of established unwanted blood vessels, suggesting they may become less dependent on VEGF-A for survival. The VEGF-A dependence of vessels may be related to the presence of vascular mural cells (pericytes or smooth muscle cells). Mural cell recruitment to the growing endothelial tube is regulated by platelet-derived growth factor-B (PDGF-B) signaling, and interference with this pathway causes disruption of endothelial cell-mural cell interactions and loss of mural cells. We have investigated the basis of blood vessel dependence on VEGF-A in models of corneal and choroidal neovascularization using a combination of reagents (an anti-VEGF aptamer and an anti-PDGFR-beta antibody) to inhibit both the VEGF-A and PDGF-B signaling pathways. We demonstrate that neovessels become refractory to VEGF-A deprivation over time. We also show that inhibition of both VEGF-A and PDGF-B signaling is more effective than blocking VEGF-A alone at causing vessel regression in multiple models of neovascular growth. These findings provide insight into blood vessel growth factor dependency and validate a combination therapy strategy for enhancing the current treatments for ocular angiogenic disease.
Normal homeostatic adjustment of elevated intraocular pressure (IOP) involves remodeling the extracellular matrix (ECM) of the trabecular meshwork (TM). This entails sensing elevated IOP, releasing numerous activated proteinases to degrade existing ECM and concurrent biosynthesis of replacement ECM components. To increase or decrease IOP, the quantity, physical properties and/or organization of new components should be somewhat different from those replaced in order to modify outflow resistance. ECM degradation and replacement biosynthesis in the outflow pathway must be tightly controlled and focused to retain the complex structural organization of the tissue. Recently identified podosome- or invadopodia-like structures (PILS) may aid in the focal degradation of ECM and organization of replacement components.
Although glaucoma is a relatively common blinding disease, most people do not develop glaucoma. A robust intraocular pressure (IOP) homeostatic mechanism keeps ocular pressures within relatively narrow acceptable bounds throughout most peoples' lives. The trabecular meshwork and/or Schlemm's canal inner wall cells respond to sustained IOP elevation and adjust the aqueous humor outflow resistance to restore IOP to acceptable levels. It appears that the cells sense IOP elevations as mechanical stretch or distortion of the actual outflow resistance and respond by initiating a complex extracellular matrix (ECM) turnover process that takes several days to complete. Although considerable information pertinent to this process is available, many aspects of the IOP homeostatic process remain to be elucidated. Components and mechanisms beyond ECM turnover could also be relevant to IOP homeostasis, but will not be addressed in detail here. Known aspects of the IOP homeostasis process as well as possible ways that it might function and impact glaucoma are discussed.
Glaucoma
Glaucoma is an optic neuropathy characterized by a distinctive pattern of permanent visual field loss.
1,2Optic disk cupping is also a diagnostic parameter. Elevated intraocular pressure (IOP) is the primary risk factor for glaucomatous optic nerve damage and reducing pressure remains the only treatable component of disease progression.2,3 Although glaucoma is a relatively common blinding disease affecting over 67 million persons worldwide, [3][4][5] it is noteworthy that only 2%-8% of people actually develop this disease within their lifetime and most only at advanced ages. The implication of this observation is that some very efficacious mechanism exists to maintain IOP within acceptable ranges throughout the life of most people.
6Intraocular Pressure IOP is maintained primarily by changes in the aqueous humor outflow resistance, which is thought to reside predominantly within the cribriform or juxtacanalicular ( JCT) region of the trabecular meshwork (TM) and the inner wall of Schlemm's canal (SC).6-10 Aqueous humor inflow rates are relatively stable and are not pressure dependent, until very high pressures are achieved. 11,12 Although outflow through the alternative or uveoscleral pathway is clearly important, most of the outflow in humans is through the conventional TM/SC route. 2,7,8,12,13
IOP HomeostasisFor our purposes, in this study, we will define IOP homeostasis as corrective adjustments of the aqueous humor outflow resistance, which occur in direct response to sustained pressure changes and which maintain IOP within acceptable physiological ranges.We hypothesize that the flow resistance within the conventional outflow pathway is continually being adjusted with time frames measured in many hours and that sustained pressure changes serve as a guide for the direction and extent of homeostatic resistance modifications. Since the outflow resistance is thought to be comprised primarily of extracellular matrix (ECM) 6,7,9,10,14,15 and sinc...
Versican appears to be a central component of the outflow resistance, where it may organize GAGs and other ECM components to facilitate and control open flow channels in the TM. However, the exact molecular organization of this resistance appears to differ between human and porcine eyes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.