Summary. Network models are widely used to represent relations between interacting units or actors. Network data often exhibit transitivity, meaning that two actors that have ties to a third actor are more likely to be tied than actors that do not, homophily by attributes of the actors or dyads, and clustering. Interest often focuses on finding clusters of actors or ties, and the number of groups in the data is typically unknown. We propose a new model, the latent position cluster model , under which the probability of a tie between two actors depends on the distance between them in an unobserved Euclidean 'social space', and the actors' locations in the latent social space arise from a mixture of distributions, each corresponding to a cluster. We propose two estimation methods: a two-stage maximum likelihood method and a fully Bayesian method that uses Markov chain Monte Carlo sampling. The former is quicker and simpler, but the latter performs better. We also propose a Bayesian way of determining the number of clusters that are present by using approximate conditional Bayes factors. Our model represents transitivity, homophily by attributes and clustering simultaneously and does not require the number of clusters to be known. The model makes it easy to simulate realistic networks with clustering, which are potentially useful as inputs to models of more complex systems of which the network is part, such as epidemic models of infectious disease. We apply the model to two networks of social relations. A free software package in the R statistical language, latentnet, is available to analyse data by using the model.
The goal of clustering is to identify distinct groups in a dataset. The basic idea of model-based clustering is to approximate the data density by a mixture model, typically a mixture of Gaussians, and to estimate the parameters of the component densities, the mixing fractions, and the number of components from the data. The number of distinct groups in the data is then taken to be the number of mixture components, and the observations are partitioned into clusters (estimates of the groups) using Bayes' rule. If the groups are well separated and look Gaussian, then the resulting clusters will indeed tend to be "distinct" in the most common sense of the word -contiguous, densely populated areas of feature space, separated by contiguous, relatively empty regions. If the groups are not Gaussian, however, this correspondence may break down; an isolated group with a non-elliptical distribution, for example, may be modeled by not one, but several mixture components, and the corresponding clusters will no longer be well separated. We present methods for assessing the degree of separation between the components of a mixture model and between the corresponding clusters. We also propose an algorithm for pruning the cluster tree generated by hierarchical model-based clustering. The algorithm starts with the tree corresponding to the mixture model chosen by the Bayesian Information Criterion. It then progressively merges clusters that do not appear to correspond to different modes of the data density.
The goal of clustering is to identify distinct groups in a dataset. Compared to non-parametric clustering methods like complete linkage, hierarchical model-based clustering has the a~vantage of offering a way to estimate the number of groups present in the data. However, its computational cost is quadratic in the number of items to be clustered, and it is therefore not applicable to large problems. We review an idea called Fractionation, originally conceived by Cutting, Karger, Pedersen and Tukey for non-parametric hierarchical clustering of large datasets, and describe an adaptation of Fractionation to model-based clustering. A further extension, called Refractionation, leads to a procedure that can be successful even in the difficult situation where there are large numbers of small groups•
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.