The most promising class of statistical models for expressing structural properties of social networks observed at one moment in time is the class of exponential random graph models (ERGMs), also known as p * models. The strong point of these models is that they can represent a variety of structural tendencies, such as transitivity, that define complicated dependence patterns not easily modeled by more basic probability models. Recently, Markov chain Monte Carlo (MCMC) algorithms have been developed that produce approximate maximum likelihood estimators. Applying these models in their traditional specification to observed network data often has led to problems, however, which can be traced back to the fact that important parts of the parameter space correspond to nearly degenerate distributions, which may lead to convergence problems of estimation algorithms, and a poor fit to empirical data. This paper proposes new specifications of exponential random graph models. These specifications represent structural propertiesWe thank Emmanuel Lazega for permission to use data collected by him. A portion of this paper was written in part while the first author was an honorary senior fellow at 99 100 SNIJDERS, PATTISON, ROBINS, AND HANDCOCK such as transitivity and heterogeneity of degrees by more complicated graph statistics than the traditional star and triangle counts. Three kinds of statistics are proposed: geometrically weighted degree distributions, alternating k-triangles, and alternating independent two-paths. Examples are presented both of modeling graphs and digraphs, in which the new specifications lead to much better results than the earlier existing specifications of the ERGM. It is concluded that the new specifications increase the range and applicability of the ERGM as a tool for the statistical analysis of social networks.
We describe some of the capabilities of the ergm package and the statistical theory underlying it. This package contains tools for accomplishing three important, and interrelated, tasks involving exponential-family random graph models (ERGMs): estimation, simulation, and goodness of fit. More precisely, ergm has the capability of approximating a maximum likelihood estimator for an ERGM given a network data set; simulating new network data sets from a fitted ERGM using Markov chain Monte Carlo; and assessing how well a fitted ERGM does at capturing characteristics of a particular network data set.
Abstractstatnet is a suite of software packages for statistical network analysis. The packages implement recent advances in network modeling based on exponential-family random graph models (ERGM). The components of the package provide a comprehensive framework for ERGM-based network modeling, including tools for model estimation, model evaluation, model-based network simulation, and network visualization. This broad functionality is powered by a central Markov chain Monte Carlo (MCMC) algorithm. The coding is optimized for speed and robustness.
Summary. Network models are widely used to represent relations between interacting units or actors. Network data often exhibit transitivity, meaning that two actors that have ties to a third actor are more likely to be tied than actors that do not, homophily by attributes of the actors or dyads, and clustering. Interest often focuses on finding clusters of actors or ties, and the number of groups in the data is typically unknown. We propose a new model, the latent position cluster model , under which the probability of a tie between two actors depends on the distance between them in an unobserved Euclidean 'social space', and the actors' locations in the latent social space arise from a mixture of distributions, each corresponding to a cluster. We propose two estimation methods: a two-stage maximum likelihood method and a fully Bayesian method that uses Markov chain Monte Carlo sampling. The former is quicker and simpler, but the latter performs better. We also propose a Bayesian way of determining the number of clusters that are present by using approximate conditional Bayes factors. Our model represents transitivity, homophily by attributes and clustering simultaneously and does not require the number of clusters to be known. The model makes it easy to simulate realistic networks with clustering, which are potentially useful as inputs to models of more complex systems of which the network is part, such as epidemic models of infectious disease. We apply the model to two networks of social relations. A free software package in the R statistical language, latentnet, is available to analyse data by using the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.