This article discusses the use of a symmetric multiplicative interaction effect to capture certain types of third-order dependence patterns often present in social networks and other dyadic datasets. Such an effect, along with standard linear fixed and random effects, is incorporated into a generalized linear model, and a Markov chain Monte Carlo algorithm is provided for Bayesian estimation and inference. In an example analysis of international relations data, accounting for such patterns improves model fit and predictive performance.
Quantitative studies in many fields involve the analysis of multivariate data of diverse types, including measurements that we may consider binary, ordinal and continuous. One approach to the analysis of such mixed data is to use a copula model, in which the associations among the variables are parameterized separately from their univariate marginal distributions. The purpose of this article is to provide a simple, general method of semiparametric inference for copula models via a type of rank likelihood function for the association parameters. The proposed method of inference can be viewed as a generalization of marginal likelihood estimation, in which inference for a parameter of interest is based on a summary statistic whose sampling distribution is not a function of any nuisance parameters. In the context of copula estimation, the extended rank likelihood is a function of the association parameters only and its applicability does not depend on any assumptions about the marginal distributions of the data, thus making it appropriate for the analysis of mixed continuous and discrete data with arbitrary marginal distributions. Estimation and inference for parameters of the Gaussian copula are available via a straightforward Markov chain Monte Carlo algorithm based on Gibbs sampling. Specification of prior distributions or a parametric form for the univariate marginal distributions of the data is not necessary.
Some key words: Bayesian inference, latent variable model, marginal likelihood, Markov chainMonte Carlo, multivariate estimation, polychoric correlation, rank likelihood, sufficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.