Iron oxide nanoparticles are available in two common phases, namely magnetite (Fe 3 O 4) and maghemite (Fe 2 O 3). Upon exposure to oxygen atoms, the magnetite phase readily oxidizes into the maghemite phase with the partial conversion of ferrous ions into ferric ions. We report on the approach to determine the ratio of magnetite and maghemite in iron oxide nanoparticles synthesized by the wet chemical route. X-ray diffraction studies and transmission electron microscopy observations confirmed the formation of highly crystalline nanoparticles of size (7 ± 2) nm. The average particle size is in the magnetic single-domain range suitable for the superparamagnetic behavior. The Mössbauer spectrum of the sample is composed of two six-line patterns in perfect agreement with the theoretically predicted model. The extracted Mössbauer parameters show contribution of two phases accounting for 47% magnetite and 53% maghemite. The hysteresis loops of the iron nanoparticles demonstrated the "S-shaped" pattern with negligible coercivity and remanence magnetization. This result reveals a promising method to synthesize and characterize magnetic nanoparticles of uniform size with a potential for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.