Human infection with avian influenza A(H7N9) virus is associated mainly with the exposure to infected poultry. The factors that allow interspecies transmission but limit human-to-human transmission are unknown. Here we show that A/Anhui/1/2013(H7N9) influenza virus infection of chickens (natural hosts) is asymptomatic and that it generates a high genetic diversity. In contrast, diversity is tightly restricted in infected ferrets, limiting further adaptation to a fully transmissible form. Airborne transmission in ferrets is accompanied by the mutations in PB1, NP and NA genes that reduce viral polymerase and neuraminidase activity. Therefore, while A(H7N9) virus can infect mammals, further adaptation appears to incur a fitness cost. Our results reveal that a tight genetic bottleneck during avian-to-mammalian transmission is a limiting factor in A(H7N9) influenza virus adaptation to mammals. This previously unrecognized biological mechanism limiting species jumps provides a measure of adaptive potential and may serve as a risk assessment tool for pandemic preparedness.
Pandemic influenza A viruses can emerge from swine, an intermediate host that supports adaptation of human-preferred receptor-binding specificity by the hemagglutinin (HA) surface antigen. Other HA traits necessary for pandemic potential are poorly understood. For swine influenza viruses isolated in 2009–2016, gamma-clade viruses had less stable HA proteins (activation pH 5.5–5.9) than pandemic clade (pH 5.0–5.5). Gamma-clade viruses replicated to higher levels in mammalian cells than pandemic clade. In ferrets, a model for human adaptation, a relatively stable HA protein (pH 5.5–5.6) was necessary for efficient replication and airborne transmission. The overall airborne transmission frequency in ferrets for four isolates tested was 42%, and isolate G15 airborne transmitted 100% after selection of a variant with a stabilized HA. The results suggest swine influenza viruses containing both a stabilized HA and alpha-2,6 receptor binding in tandem pose greater pandemic risk. Increasing evidence supports adding HA stability to pre-pandemic risk assessment algorithms.
ABT-751 demonstrated intermediate activity against this tumor panel. Neuroblastoma models appear somewhat more sensitive to this agent, with objective regressions also in rhabdomyosarcoma and Wilms tumor. ABT-751 was also active in several tumor lines intrinsically refractory to vincristine or paclitaxel.
To clarify the epidemiology of influenza A viruses in coordinated swine production systems to which no animals from outside the system are introduced, we conducted virologic surveillance during September 2012–September 2013. Animal age, geographic location, and farm type were found to affect the prevalence of these viruses.
Currently, there are two different types of licensed influenza virus vaccines available in the USA, the live attenuated cold-adapted vaccine and the inactivated vaccine. Children greater than 2 years of age and adults younger than 50 years (apart from those suffering from immunodeficiencies or lung disease) may choose between the two vaccines. Previous studies have shown that both vaccines elicit significant serum antibody responses. However, comprehensive analyses of antibody-forming cells (AFCs) in the upper respiratory tract (URT), the critical site of pathogen entry, have been lacking. We therefore compared influenza virus-specific antibody and AFC activities in systemic and mucosal tissues following immunizations of cotton rats with inactivated or live-attenuated vaccines, including vaccines from the 2009-10 and 2010-11 seasons. Results demonstrated that inactivated and live-attenuated vaccines induced virus-specific AFCs, but patterns of residence and function were highly disparate. The inactivated vaccine elicited AFCs predominantly in the spleen and bone marrow; IgG was the main isotype. In contrast, the live attenuated vaccine elicited acute and long-sustained AFC responses in the diffuse nasal-associated lymphoid tissue (d-NALT) and lung, with IgA being the predominant isotype. The appearance of these d-NALT URT responses was confirmed by a similar study of the 2009-10 live attenuated vaccine in ferrets. Data emphasize that the inactivated and live-attenuated vaccines that are each capable of protecting humans from influenza virus disease do so by very different modes of immune surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.