A key parameter in modeling differential spacecraft charging is the resistivity of insulating materials. This parameter determines how charge will accumulate and redistribute across the spacecraft, as well as the time scale for charge transport and dissipation. ASTM constant voltage methods are shown to provide inaccurate resistivity measurements for materials with resistivities greater than ~10 17 Ω-cm or with long polarization decay times such as are found in many polymers. These data have been shown to often be inappropriate for spacecraft charging applications, and have been found to underestimate charging effects by one to four orders of magnitude for many materials. The charge storage decay method is shown to be the preferred method to determine the resistivities of such highly insulating materials. A review is presented of methods to measure the resistivity of highly insulating materials-including the electrometerresistance method, the electrometer-constant voltage method, and the charge storage method. The different methods are found to be appropriate for different resistivity ranges and for different charging circumstances. A simple, macroscopic, physics-based model of these methods allows separation of the polarization current and dark current components from long duration measurements of resistivity over day-to month-long time scales. Model parameters are directly related to the magnitude of charge transfer and storage and the rate of charge transport. The model largely explains the observed differences in resistivity found using the different methods and provides a framework for recommendations for the appropriate test method for spacecraft materials with different resistivities and applications..
A traditional constant voltage conductivity test method was used to measure how the conductivity of highly insulating low-density polyethylene polymer films depends on applied electric field, repeated and prolonged electric field exposure, and sample temperature. The strength of the applied voltage was varied to determine the electric field dependence. At low electric field, the resistivity was measured from cryogenic temperatures to well above the glass transition temperature. Comparisons were made with a variety of models of the conduction mechanisms common in insulators, including transient polarization and diffusion and steady-state thermally activated hopping conductivity and variable range hopping conductivity, to determine which mechanisms were active for LDPE and to provide a better picture of its electrical behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.