The effects of evolving surface contamination on spacecraft charging have been investigated through (i) ground-based measurements of the change in electron emission properties of a conducting surface undergoing contamination and (ii) modeling of the charging of such surfaces using the NASCAP code. Specifically, we studied a Au surface as adsorbed species were removed and a very thin disordered carbon film was deposited as a result of exposure to an intense, normal incidence electron beam. As a result of this contamination, we found an ~50% decrease in secondary electron yield and an ~20% reduction in backscattered yield. The type and rates of contamination observed are similar to those encountered by operational spacecraft. Charging potentials of an isolated panel of the material were determined under both sunlit and eclipse conditions in geosynchronous orbits for typical and extreme environments. In all environments studied, just monolayers of contamination lead to predictions of an abrupt threshold effect for spacecraft charging; panels that charged to small positive values when uncontaminated developed kilovolt negative potentials. The relative effect of NASCAP parameters for modeling secondary and backscattered electron emission and plasma electron distributions were also investigated. We conclude that surface contamination must be considered to avoid the serious detrimental effects associated with severe spacecraft charging.
Modest changes in spacecraft charging conditions can lead to abrupt changes in the spacecraft equilibrium, from small positive potentials to large negative potentials relative to the space plasma; this phenomenon is referred to as threshold charging. It is well known that temporal changes of the space plasma environment (electron plasma temperature or density) can cause threshold charging. Threshold charging can also result from by temporal changes in the juxtaposition of the spacecraft to the environment, including spacecraft orbit, orientation, and geometry. This study focuses on the effects of possible changes in electron emission properties of representative spacecraft materials. It is found that for electron-induced emission, the possible threshold scenarios are very rich, since this type of electron emission can cause either positive or negative charging. Alternately, modification of photon-or ion-induced electron emission is found to induce threshold charging only in certain favorable cases. Changes of emission properties discussed include modifications due to: contamination, degradation and roughening of surfaces and layered materials; biasing and charge accumulation; bandstructure occupation and density of states caused by heat, optical or particle radiation; optical reflectivity and absorptivity; and inaccuracies and errors in measurements and parameterization of materials properties. An established method is used here to quantitatively gauge the relative extent to which these various changes in electron emission alter a spacecraft's charging behavior and possibly lead to threshold charging. The absolute charging behavior of a hypothetical flat, twodimensional satellite panel of a single material (either polycrystalline conductor Au or the polymeric polyimide Kapton™ H) is modeled as it undergoes modification and concomitant changes in spacecraft charging in three representative geosynchronous orbit environments, from full sunlight to full shade (eclipse) are considered.
IntroductionMany spacecraft system anomalies and component failures are known to result from spacecraft charging which is due to the bombardments of spacecraft by energetic electrons, ions, and photons in natural space surrounding [Hastings and Garrett, 1996; Bedingfield et al., 1996; Leach et al., 1995]. To assist spacecraft designers in accommodating and mitigating the harmful charging effects on spacecraft, NASA has developed an extensive set of engineering tools to predict the extent of charging in various spacecraft environments (for example, NASCAP/LEO, NASCAP/GEO, and POLAR) [Mandell et al., 1993]. However, current NASCAP databases lack electronic properties of most spacecraft materials in use (only nine basic materials are presently incorporated) and many new spacecraft bulk materials and coatings need to be characterized. In an effort to improve the reliability and versatility of these models, the NASA Space Environments and Effects (NASA/SEE) Program has funded a study to measure the electronic properties of spacecraft materials related to NASCAP parameters [Dennison, 1998]. The objectives of the study are (i) to provide more accurate measurements together with sufficient materials characterization and (ii) to significantly extend the database to include a wider range of materials that are more representative of the myriad materials used in spacecraft design and incorporates newly developed materials.This paper describes the results of the first stage of this project, measurements of the electronic properties of conducting spacecraft materials. We begin with a description of the required measurements and specifics of the experimental methods used. Representative measurements for gold are described in detail. This is followed by a complete list of the conducting materials studied, justification of their selection for study, and a summary of the important results of the measurements. We end with a description of incorporation of these measurements into the NASCAP database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.