United States dairy operations use antibiotics (primarily β-lactams and tetracyclines) to manage bacterial diseases in dairy cattle. Antibiotic residues, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARG) can be found in dairy manure and may contribute to the spread of antibiotic resistance (AR). Although β-lactam residues are rarely detected in dairy manure, tetracycline residues are common and perhaps persistent. Generally, <15% of bacterial pathogen dairy manure isolates are ARB, although resistance to some antibiotics (e.g., tetracycline) can be higher. Based on available data, the prevalence of medically important ARB on dairy operations is generally static or may be declining for antibiotic-resistant Staphylococcus spp. Over 60 ARG can be found in dairy manure (including β-lactam and tetracycline resistance genes), although correlations with antibiotic usage, residues, and ARB have been inconsistent, possibly because of sampling and analytical limitations. Manure treatment systems have not been specifically designed to mitigate AR, though certain treatments have some capacity to do so. Generally, well-managed aerobic compost treatments reaching higher peak temperatures (>60°C) are more effective at mitigating antibiotic residues than static stockpiles, although this depends on the antibiotic residue and their interactions. Similarly, thermophilic anaerobic digesters operating under steady-state conditions may be more effective at mitigating antibiotic residues than mesophilic or irregularly operated digesters or anaerobic lagoons. The number of ARB may decline during composting and digestion or be enriched as the bacterial communities in these systems shift, affecting relative ARG abundance or acquire ARG during treatment. Antibiotic resistance genes often persist through these systems, although optimal management and higher operating temperature may facilitate their mitigation. Less is known about other manure treatments, although separation technologies may be unique in their ability to partition antibiotic residues based on sorption and solubility properties. Needed areas of study include determining natural levels of AR in dairy systems, standardizing and optimizing analytical techniques, and more studies of operating on-farm systems, so that treatment system performance and actual human health risks associated with levels of antibiotic residues, ARB, and ARG found in dairy manure can be accurately assessed.
Apoptosis is accompanied by distinct morphological changes at the plasma and organelle membrane level. Involvement of certain lipids in apoptosis has been established; however, we have limited understanding of the specific lipid structures that participate in this process. We used untargeted comparative lipidomics to study the changes in lipid composition during staurosporine-induced apoptosis in HCT-116. Our results revealed that ceramides, dihydroceramides, and sphingomyelins, with defined acyl chains, constitute the majority of changes in the lipidome. Expression levels and activities of enzymes responsible for the biosynthesis of lipids that change suggest that de novo synthesis causes these specific changes. Further analysis of the lipidome during apoptosis in other cancer and non-cancer cell lines suggested that accumulation of ceramides and dihydroceramides is specific to cancer cells. Taken together, our data propose that these molecules are regulated at the lipid-specific level during apoptosis and that this regulation differs between cancer and non-cancer cells.
The use of antimicrobials by the livestock industry can lead to the release of unmetabolized antimicrobials and antimicrobial resistance genes (ARG) into the environment. However, the relationship between antimicrobial use, residual antimicrobials, and ARG prevalence within manure is not well understood, specifically across temporal and locationbased scales. The current study determined ARG abundance in untreated manure blend pits and long-term storage systems from 11 conventional and one antimicrobial-free dairy farms in the Northeastern U.S. at six times over one-year. Thirteen ARGs corresponding to resistance mechanisms for tetracyclines, macrolides-lincosamides, sulfonamides, aminoglycosides, and β-lactams were quantified using a Custom qPCR Array or targeted qPCR. ARG abundance differed between locations, suggesting farm specific microbial resistomes. ARG abundance also varied temporally. Manure collected during the winter contained lower ARG abundances. Overall, normalized ARG concentrations did not correlate to average antimicrobial usage or tetracycline concentrations across farms and collection dates. Of the 13 ARGs analyzed, only four genes showed a higher abundance in samples from conventional farms and eight ARGs exhibited similar normalized concentrations in the conventional and antimicrobial-free farm samples. No clear trends were observed in ARG abundance between dairy manure obtained from blend pits and long-term storage collected during two drawdown periods (fall and spring), although higher ARG abundances were generally observed in spring compared to fall. This comprehensive study informs future studies needed to determine the contributions of ARGs from dairy manure to the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.