Despite modern immunosuppressive therapy, allograft rejection remains a major cause of solid organ transplant dysfunction. For clinical care, organ transplant function is routinely monitored by measuring biomarkers that, depending on the organ transplanted, include serum creatinine, N-terminal pro-hormone of brain natriuretic peptide (NT-proBNP), and aspartate aminotransferase. All can be measured easily in clinical chemistry laboratories. The main problem with these biomarkers is that they have a low sensitivity for the detection of allograft damage and are nonspecific for the detection of allograft rejection. To diagnose rejection, histologic examination of grafted tissue is necessary, which requires an invasive biopsy procedure. There is thus an unmet need in transplantation medicine for biomarkers that are specific for rejection, identify graft injury at an early stage, and may eventually overcome the need for a transplant biopsy. Recently, tremendous progress in the field of biomarkers has been made. In this narrative review, the potential of donor-derived cell-free DNA (ddcfDNA), cell-free nucleosomes, and extracellular vesicles to act as next-generation biomarkers for solid organ transplant is discussed. Based on the fact that cell content is released during rejection, these markers could serve as very specific biomarkers for allograft injury and rejection. These markers have the potential to improve rejection monitoring, evaluate the response to antirejection therapy, and may decrease the need for invasive procedures.
Background In solid organ transplant (SOT) recipients, transplant rejection during immune checkpoint inhibitor (ICI) treatment for cancer is a clinical problem. Donor-derived cell-free DNA (dd-cfDNA) can be detected in blood and is a sensitive biomarker for diagnosis of acute rejection in SOT recipients. To our best knowledge, this is the first case report of a kidney transplant recipient with advanced cancer treated with ICI who was monitored with dd-cfDNA. Case presentation A 72-year old female with a long-standing renal transplant was diagnosed with advanced melanoma in 2018 and was treated with the anti-PD1 antibody nivolumab. Within 12 days after the first administration of nivolumab, dd-cfDNA ratio increased to 23%, suggesting allograft rejection. Her kidney transplant function deteriorated and acute rejection was confirmed by renal transplant biopsy. As the rejection could not be controlled despite immunosuppressive treatment, a transplant nephrectomy was necessary and haemodialysis was started. Immunological analysis of the renal explant showed infiltration of alloreactive, nivolumab-saturated, PD1+ cytotoxic T cells. After transplant nephrectomy, she experienced nivolumab-related toxicity and rapid disease progression. Conclusion Clinicians prescribing ICIs should be aware that SOT recipients are at risk of transplant rejection as a result of T cell activation. Dd-cfDNA is a sensitive biomarker and should be further studied for early detection of transplant rejection. Immunological analysis of the kidney explant showed marked graft infiltration with alloreactive PD-1 + cytotoxic T cells that were saturated with nivolumab.
Background. Donor-derived cell-free DNA (ddcfDNA) is a promising minimally invasive biomarker for acute rejection (AR) in kidney transplant recipients. To assess the diagnostic value of ddcfDNA as a marker for AR, ddcfDNA was quantified at multiple time points after kidney transplantation with a novel high-throughput droplet digital PCR indel method that allowed for the absolute quantification of ddcfDNA. Methods. In this study, ddcfDNA in plasma samples from 223 consecutive kidney transplant recipients was analyzed pretransplantation; at 3, 7, and 180 d after transplantation; and at time of for-cause biopsies obtained within the first 180 d after transplantation. Results. Median (interquartile range) ddcfDNA concentration was significantly higher on day 3 (58.3 [17.7-258.3] copies/mL) and day 7 (25.0 [10.4-70.8] copies/mL) than on day 180 after transplantation (4.2 [0.0-8.3] copies/mL; P < 0.001 and P < 0.001, respectively). At time of biopsy-proven AR (BPAR), between day 11 and day 180 after transplantation, ddcfDNA concentration was significantly higher (50.0 [25.0-108.3] copies/mL) than those when biopsies showed non-AR (0.0 [0.0-15.6] copies/mL; P < 0.05). ddcfDNA concentration within the first 10 d after transplantation showed no significant difference between recipients with BPAR and those with non-AR in their biopsy or between recipients with BPAR and ddcfDNA measured at day 3 and day 7. Conclusions. Unfortunately, ddcfDNA concentration is not a good biomarker to detect AR within the first 10 d after transplantation; however, BPAR occurring after 10 d after transplantation can be detected in kidney transplant recipients by ddcfDNA using a novel and unique high-throughput droplet digital PCR indel method.
Supplemental Digital Content is Available in the Text.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.