Belatacept-based immunosuppressive therapy resulted in higher and more severe acute rejection compared with tacrolimus-based therapy. This trial did not identify cellular biomarkers predictive of rejection. In addition, the CD28-CD80/86 costimulatory pathway appeared to be sufficiently blocked by belatacept and did not predict rejection.
The new and clinically relevant finding of this study is that imbalance and falls in PSP are closely associated with thalamic dysfunction. Deficits in thalamic postural control get most evident when balance is assessed during modified sensory input. The results are consistent with the hypothesis that reduced thalamic activation via the ascending brainstem projections may cause postural imbalance in PSP.
Tissue-resident memory T (T
RM
) cells are characterized by their surface expression of CD69 and can be subdivided in CD103+ and CD103− T
RM
cells. The origin and functional characteristics of T
RM
cells in the renal allograft are largely unknown. To determine these features we studied T
RM
cells in transplant nephrectomies. T
RM
cells with a CD103+ and CD103− phenotype were present in all samples (
n
= 13) and were mainly CD8+ T cells. Of note, donor-derived T
RM
cells were only detectable in renal allografts that failed in the first month after transplantation. Grafts, which failed later, mainly contained recipient derived T
RM
cells. The gene expression profiles of the recipient derived CD8+ T
RM
cells were studied in more detail and showed a previously described signature of tissue residence within both CD103+ and CD103− T
RM
cells. All CD8+ T
RM
cells had strong effector abilities through the production of IFNγ and TNFα, and harboured high levels of intracellular granzyme B and low levels of perforin. In conclusion, our results demonstrate that donor and recipient T
RM
cells reside in the rejected renal allograft. Over time, the donor-derived T
RM
cells are replaced by recipient T
RM
cells which have features that enables these cells to aggressively respond to the allograft.
Monocytes and macrophages play key roles in many disease states, including cellular and humoral rejection after solid organ transplantation (SOT). To suppress alloimmunity after SOT, immunosuppressive drug therapy is necessary. However, little is known about the effects of the immunosuppressive drugs tacrolimus and mycophenolic acid (MPA) on monocyte activation and function. Here, the effect of these immunosuppressants on monocytes was investigated by measuring phosphorylation of three intracellular signaling proteins which all have a major role in monocyte function: p38MAPK, ERK and Akt. In addition, biological functions downstream of these signaling pathways were studied, including cytokine production, phagocytosis and differentiation into macrophages. To this end, blood samples from healthy volunteers were spiked with diverse concentrations of tacrolimus and MPA. Tacrolimus (200 ng/ml) inhibited phosphorylation of p38MAPK by 30% (mean) in CD14+ monocytes which was significantly less than in activated CD3+ T cells (max 60%; p < 0.05). This immunosuppressive agent also partly inhibited p-AKT (14%). MPA, at a therapeutic concentration showed the strongest effect on p-AKT (27% inhibition). p-ERK was inhibited with a maximum of 15% after spiking with either tacrolimus or MPA. The production of IL-1β and phagocytosis by monocytes were not affected by tacrolimus concentrations, whereas MPA did inhibit IL-1β production by 50%. Monocyte/macrophage polarization was shifted to an M2-like phenotype in the presence of tacrolimus, while MPA increased the expression of M2 surface markers, including CD163 and CD200R, on M1 macrophages. These results show that tacrolimus and MPA do not strongly affect monocyte function, apart from a change in macrophage polarization, to a clinically relevant degree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.