Aims/hypothesisThe study investigated cross-sectional associations of total amount and patterns of sedentary behaviour with glucose metabolism status and the metabolic syndrome.MethodsWe included 2,497 participants (mean age 60.0 ± 8.1 years, 52% men) from The Maastricht Study who were asked to wear an activPAL accelerometer 24 h/day for 8 consecutive days. We calculated the daily amount of sedentary time, daily number of sedentary breaks and prolonged sedentary bouts (≥30 min), and the average duration of the sedentary bouts. To determine glucose metabolism status, participants underwent an oral glucose tolerance test. Associations of sedentary behaviour variables with glucose metabolism status and the metabolic syndrome were examined using multinomial logistic regression analyses.ResultsOverall, 1,395 (55.9%) participants had normal glucose metabolism, 388 (15.5%) had impaired glucose metabolism and 714 (28.6%) had type 2 diabetes. The odds ratio per additional hour of sedentary time was 1.22 (95% CI 1.13, 1.32) for type 2 diabetes and 1.39 (1.27, 1.53) for the metabolic syndrome. No significant or only weak associations were seen for the number of sedentary breaks, number of prolonged sedentary bouts or average bout duration with either glucose metabolism status or the metabolic syndrome.Conclusions/interpretationAn extra hour of sedentary time was associated with a 22% increased odds for type 2 diabetes and a 39% increased odds for the metabolic syndrome. The pattern in which sedentary time was accumulated was weakly associated with the presence of the metabolic syndrome. These results suggest that sedentary behaviour may play a significant role in the development and prevention of type 2 diabetes, although longitudinal studies are needed to confirm our findings.
As accelerometers are commonly used for 24-h measurements of daily activity, methods for separating waking from sleeping time are necessary for correct estimations of total daily activity levels accumulated during the waking period. Therefore, an algorithm to determine wake and bed times in 24-h accelerometry data was developed and the agreement of this algorithm with self-report was examined. One hundred seventy-seven participants (aged 40-75 years) of The Maastricht Study who completed a diary and who wore the activPAL3™ 24 h/day, on average 6 consecutive days were included. Intraclass correlation coefficient (ICC) was calculated and the Bland-Altman method was used to examine associations between the self-reported and algorithm-calculated waking hours. Mean self-reported waking hours was 15.8 h/day, which was significantly correlated with the algorithm-calculated waking hours (15.8 h/day, ICC = 0.79, P = < 0.001). The Bland-Altman plot indicated good agreement in waking hours as the mean difference was 0.02 h (95% limits of agreement (LoA) = −1.1 to 1.2 h). The median of the absolute difference was 15.6 min (Q1-Q3 = 7.6-33.2 min), and 71% of absolute differences was less than 30 min. The newly developed automated algorithm to determine wake and bed times was highly associated with self-reported times, and can therefore be used to identify waking time in 24-h accelerometry data in large-scale epidemiological studies.
Aims/hypothesesOur aim was to examine the independent and combined (cross-sectional) associations of sedentary time (ST), higher intensity physical activity (HPA) and cardiorespiratory fitness (CRF) with metabolic syndrome and diabetes status.MethodsIn 1933 adults (aged 40–75 years) ST and HPA (surrogate measure for moderate to vigorous physical activity) were measured with the activPAL3. CRF was assessed by submaximal cycle–ergometer testing. Metabolic syndrome was defined according to the Adult Treatment Panel (ATP) III guidelines. Diabetes status (normal, prediabetes [i.e. impaired glucose tolerance and/or impaired fasting glucose] or type 2 diabetes) was determined from OGTT. (Multinomial) logistic regression analyses were used to calculate likelihood for the metabolic syndrome, prediabetes and type 2 diabetes according to ST, HPA and CRF separately and combinations of ST–CRF and HPA–CRF.ResultsHigher ST, lower HPA and lower CRF were associated with greater odds for the metabolic syndrome and type 2 diabetes independently of each other. Compared with individuals with high CRF and high HPA (CRFhigh–HPAhigh), odds for the metabolic syndrome and type 2 diabetes were higher in groups with a lower CRF regardless of HPA. Individuals with low CRF and low HPA (CRFlow–HPAlow) had a particularly high odds for the metabolic syndrome (OR 5.73 [95% CI 3.84, 8.56]) and type 2 diabetes (OR 6.42 [95% CI 3.95, 10.45]). Similarly, compared with those with high CRF and low ST (CRFhigh–STlow), those with medium or low CRF had higher odds for the metabolic syndrome, prediabetes and type 2 diabetes, irrespective of ST. In those with high CRF, high ST was associated with significantly high odds for the metabolic syndrome (OR 2.93 [95% CI 1.72, 4.99]) and type 2 diabetes (OR 2.21 [95% CI 1.17, 4.17]). The highest odds for the metabolic syndrome and type 2 diabetes were observed in individuals with low CRF and high ST (CRFlow–SThigh) (OR [95% CI]: the metabolic syndrome, 9.22 [5.74, 14.80]; type 2 diabetes, 8.38 [4.83, 14.55]).Conclusions/interpretationThese data suggest that ST, HPA and CRF should all be targeted in order to optimally reduce the risk for the metabolic syndrome and type 2 diabetes.Electronic supplementary materialThe online version of this article (10.1007/s00125-018-4719-7) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
Background: In an aging population, regular physical activity (PA) and exercise have been recognized as important factors in maintaining physical function and thereby preventing loss of independence and disability. However, (older) adults spent the majority of their day sedentary and therefore insight into the consequences of sedentary behavior on physical function, independent of PA, is warranted.Objective: To examine the associations of objectively measured sedentary time (ST), patterns of sedentary behavior, overall PA, and higher intensity PA (HPA) with objective measures of physical function.Methods: This is a cross-sectional study in 1,932 men and women (aged 40–75 years) participating in The Maastricht Study. The activPAL3 was used to assess daily sedentary behavior: ST (h), sedentary breaks (n), prolonged (≥30 min) sedentary bouts (n), and to assess time spent in (H)PA (h). Measures of physical function included: covered distance during a 6 min walk test [6MWD (meters)], timed chair rise stand test performance [TCSTtime (seconds)], grip strength (kg kg−1), and elbow flexion and knee extension strength (Nm kg−1). Linear regression analyses were used to examine associations between daily sedentary behavior and PA with physical function.Results: Every additional hour ST was associated with shorter 6MWD [B = −2.69 m (95% CI = −4.69; −0.69)] and lower relative elbow extension strength (B = −0.01 Nm kg−1 (−0.02; 0.00). More sedentary breaks were associated with faster TCSTtime: B = −0.55 s (−0.85; −0.26). Longer average sedentary bout duration was associated with slower TCSTtime [B = 0.17 s (0.09; 0.25)] and lower knee extension strength [B = −0.01 Nm kg−1 (−0.02; 0.00)]. Every hour of PA and HPA were associated with greater 6MWD [BPA = 15.88 m (9.87; 21.89), BHPA = 40.72 m (30.18; 51.25)], faster TCSTtime [BPA = −0.55 s (−1.03; −0.07), BHPA = −2.25 s (−3.09; −1.41)], greater elbow flexion strength [BPA = 0.03 Nm kg−1 (0.01; 0.07)], [BHPA = 0.05 Nm kg−1 (0.01; 0.08)], and greater knee extension strength [BPA = 0.04 Nm kg−1 (0.01; 0.07)], [BHPA = 0.13 Nm kg−1 (0.06; 0.20)].Conclusion: In adults aged 40–75 years, sedentary behavior appeared to be marginally associated with lower physical function, independent of HPA. This suggests that merely reducing sedentary behavior is insufficient to improve/maintain physical function. In contrast, engaging regularly in PA, in particular HPA, is important for physical function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.