To facilitate experimental studies on countercurrent reactors, a discrete contacting mode was worked out experimentally and theoretically. Enzymatic hydrolysis of penicillin G to phenylacetic acid and 6-aminopenicillanic acid was carried out in biphasic aqueous organic systems without pH control. The two phases were countercurrently contacted in a discrete manner, so that equilibrium was reached in each stage. Sets of three and five shake flasks served to mimic equilibrium stages in the countercurrent setup. It was shown that discrete countercurrent contact leads to the same extent of improvement of the equilibrium conversion as continuous countercurrent contact does, when compared to the batch situation. Therefore, discrete experiments may be used to simplify the development of continuous countercurrent reactors.
A fractionating reactor for equilibrium-limited reactions is studied theoretically. Reactant A is fed in the center of the countercurrent fractionating system. Product P is effectively transported with the auxiliary phase, while product Q is effectively transported with the main phase, in which the reaction takes place. Model calculations were based on partition and reaction equilibrium at all stages. These show that if the initial reactant concentration and the flow rates are properly selected, the extent of conversion will significantly exceed the corresponding batch conversion. To approach complete conversion in the fractionating reactor, and to recover both products in a pure form, net transport of reactant in either of the countercurrent directions should be prevented. However, irrespective of the number of equilibrium stages, this situation cannot be fully reached when the reactant feed stream is too large (compared with the main and auxiliary streams). Nonetheless, one of the two products may be recovered in a pure form even for such large feed streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.