Molecules with an amide functional group resemble peptide bonds, the molecular bridges that connect amino acids, and may thus be relevant in processes that lead to the formation of life. In this study, the solid state formation of some of the smallest amides is investigated in the laboratory. To this end, CH 4 :HNCO ice mixtures at 20 K are irradiated with far-UV photons, where the radiation is used as a tool to produce the radicals required for the formation of the amides. Products are identified and investigated with infrared spectroscopy and temperature programmed desorption mass spectrometry.The laboratory data show that NH 2 CHO, CH 3 NCO, NH 2 C(O)NH 2 , CH 3 C(O)NH 2 and CH 3 NH 2 can simultaneously be formed. The NH 2 CO radical is found to be key in the formation of larger amides. In parallel, ALMA observations towards the low-mass protostar IRAS 16293-2422B are analysed in search of CH 3 NHCHO (Nmethylformamide) and CH 3 C(O)NH 2 (acetamide). CH 3 C(O)NH 2 is tentatively detected towards IRAS 16293-2422B at an abundance comparable with those found towards high-mass sources. The combined laboratory and observational data indicates that NH 2 CHO and CH 3 C(O)NH 2 are chemically linked and form in the ice mantles of interstellar dust grains. A solid-state reaction network for the formation of these amides is proposed.
The thermal structure of protoplanetary disks is a fundamental characteristic of the system that has wide-reaching effects on disk evolution and planet formation. In this study, we constrain the 2D thermal structure of the protoplanetary disk TW Hya structure utilizing images of seven CO lines. This includes new ALMA observations of 12 CO J = 2-1 and C 18 O J = 2-1 as well as archival ALMA observations of 12 CO J = 3-2, 13 CO J = 3-2 and 6-5, and C 18 O J = 3-2 and 6-5. Additionally, we reproduce a Herschel observation of the HD J = 1-0 line flux and the spectral energy distribution and utilize a recent quantification of CO radial depletion in TW Hya. These observations were modeled using the thermochemical code RAC2D, and our best-fit model reproduces all spatially resolved CO surface brightness profiles. The resulting thermal profile finds a disk mass of 0.025 M e and a thin upper layer of gas depleted of small dust with a thickness of ∼1.2% of the corresponding radius. Using our final thermal structure, we find that CO alone is not a viable mass tracer, as its abundance is degenerate with the total H 2 surface density. Different mass models can readily match the spatially resolved CO line profiles with disparate abundance assumptions. Mass determination requires additional knowledge, and, in this work, HD provides the additional constraint to derive the gas mass and support the inference of CO depletion in the TW Hya disk. Our final thermal structure confirms the use of HD as a powerful probe of protoplanetary disk mass. Additionally, the method laid out in this paper is an employable strategy for extraction of disk temperatures and masses in the future.
Context. The number of identified complex organic molecules (COMs) in inter-and circumstellar gas-phase environments is steadily increasing. Recent laboratory studies show that many such species form on icy dust grains. At present only smaller molecular species have been directly identified in space in the solid state. Accurate spectroscopic laboratory data of frozen COMs, embedded in ice matrices containing ingredients related to their formation scheme, are still largely lacking.Aims. This work provides infrared reference spectra of acetaldehyde (CH3CHO), ethanol (CH3CH2OH), and dimethyl ether (CH3OCH3) recorded in a variety of ice environments and for astronomically relevant temperatures, as needed to guide or interpret astronomical observations, specifically for upcoming James Webb Space Telescope observations. Methods. Fourier transform transmission spectroscopy (500-4000 cm −1 / 20-2.5 µm, 1.0 cm −1 resolution) was used to investigate solid acetaldehyde, ethanol and dimethyl ether, pure or mixed with water, CO, methanol, or CO:methanol. These species were deposited on a cryogenically cooled infrared transmissive window at 15 K. A heating ramp was applied, during which IR spectra were recorded until all ice constituents were thermally desorbed. Results. We present a large number of reference spectra that can be compared with astronomical data. Accurate band positions and band widths are provided for the studied ice mixtures and temperatures. Special efforts have been put into those bands of each molecule that are best suited for identification. For acetaldehyde the 7.427 and 5.803 µm bands are recommended, for ethanol the 11.36 and 7.240 µm bands are good candidates, and for dimethyl ether bands at 9.141 and 8.011 µm can be used. All spectra are publicly available in the Leiden Database for Ice.
Quantifying the composition of the material in protoplanetary disks is paramount to determining the potential for exoplanetary systems to produce and support habitable environments. A key complex organic molecule (COM) to detect is methanol (CH 3 OH). CH 3 OH primarily forms at low temperatures via the hydrogenation of CO ice on the surface of icy dust grains and is a necessary basis for the formation of more complex species like amino acids and proteins. We report the detection of CH 3 OH in a disk around a young, luminous A-type star HD 100546. This disk is warm and therefore does not host a significant CO ice reservoir. We argue that the CH 3 OH cannot form in situ, and hence, this disk has likely inherited COMs rich ice from an earlier cold dark cloud phase. This is strong evidence that at least some of the organic material survives the disk formation process and can then be incorporated into forming planets, moons and comets. Therefore, crucial pre-biotic chemical evolution already takes place in dark star-forming clouds.
Emission bands from polycyclic aromatic hydrocarbons (PAHs) dominate the mid-infrared spectra of a wide variety of astronomical sources, encompassing nearly all stages of stellar evolution. Despite their similarities, details in band positions and shapes have allowed a classification of PAH emission to be developed. It has been suggested that this classification is in turn associated with the degree of photoprocessing of PAHs. Over the past decade, a more complete picture of the PAH interstellar life-cycle has emerged, in which a wide range of PAH species are formed during the later stages of stellar evolution. After this they are photoprocessed, increasing the relative abundance of the more stable (typically larger and compact) PAHs. For this work we have tested the effect of the symmetry, size, and structure of PAHs on their fragmentation pattern and infrared spectra by combining experiments at the free electron laser for infrared experiments (FELIX) and quantum chemical computations. Applying this approach to the cations of four molecular species, perylene (C 20 H 12 ), peropyrene (C 26 H 14 ), ovalene (C 32 H 14 ) and isoviolanthrene (C 34 H 18 ), we find that a reduction of molecular symmetry causes the activation of vibrational modes in the 7-9 µm range. We show that the IR characteristics of less symmetric PAHs can help explain the broad band observed in the class D spectra, which are typically associated with a low degree of photoprocessing. Such large, nonsymmetrical irregular PAHs are currently largely missing from the NASA Ames PAH database. The band positions and shapes of the largest more symmetric PAH measured here, show the best resemblance with class A and B sources, representative of regions with high radiation fields and thus heavier photoprocessing. Furthermore, the dissociation patterns observed in the mass spectra hint to an enhanced stability of the carbon skeleton in more symmetric PAHs with respect to the irregular and less symmetric species, which tend to loose carbon containing units. Although not a direct proof, these findings are fully in line with the grandPAH hypothesis, which claims that symmetric large PAHs can survive as the radiation field increases, while their less symmetric counterparts are destroyed or converted to symmetric PAHs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.