Confined nanospaces in which reactions can take place, have been created by various approaches such as molecular capsules, zeolites and micelles. In this tutorial review we focus on the application of self-assembled nanocapsules with well-defined cavities as nanoreactors for organic and metal catalysed transformations. The self-assembly of nanocapsules based on noncovalent bonds such as hydrogen bonds and metal-ligand interactions is discussed to introduce the properties of the building blocks and capsules thereof. We will elaborate on the encapsulation effects that can be expected when reactions are carried out in a capsule-protected environment. Subsequently, literature examples will be described in which self-assembled nanocapsules are applied as nanoreactors, for various types of organic and metal catalysed reactions.
Hybrid bidentate phosphine-phosphoramidite ligands are prepared in a modular 2-step sequence and their rhodium complexes display high selectivity in rhodium catalysed hydrogenation and hydroformylation reactions.
The power of natural selection through survival of the fittest is nature's ultimate tool for the improvement and advancement of species. To apply this concept in catalyst development is attractive and may lead to more rapid discoveries of new catalysts for the synthesis of relevant targets, such as pharmaceuticals. Recent advances in ligand synthesis using combinatorial methods have allowed the generation of a great diversity of catalysts. However, selection methods are few in number. We introduce a new selection method that focuses on the stability of catalytic intermediates measured by mass spectrometry. The stability of the intermediate relates inversely to the reactivity of the catalyst, which forms the basis of a catalyst-screening protocol in which less-abundant species represent the most-active catalysts, 'the survival of the weakest'. We demonstrate this concept in the palladium-catalysed allylic alkylation reaction using diphosphine and IndolPhos ligands and support our results with high-level density functional theory calculations.
A small library of 17 modular and easily accessible phenol-derived chiral phosphine-phosphite ligands was evaluated in the asymmetric Rh-catalyzed hydroformylation of styrene. It was found that the stereochemical outcome of the reaction is highly dependent on the chiral phosphite moiety and the substituents on the phenolic backbone. Among the ligands studied, Taddol-based ligands of type 10 bearing bulky substituents in ortho-position to the phosphite performed best, with enantioselectivities of up to 85% ee and regioselectivities of g98:2. High-pressure NMR of the active catalyst [HRh(P-P)(CO) 2 ] (P-P = 10h) revealed an equatorial-apical coordination of the ligand at rhodium. Temperature dependency of the coupling constants observed during the experiment indicates equilibrium between the two equatorial-apical isomers, with the isomer in which the phosphite occupies the equatorial position being the dominant species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.