Several research and innovation initiatives have been pursued worldwide for the development of autonomous and unmanned ships. However, these ships’ wider adoption is limited by the existing regulatory framework, which presently does not provide clear guidelines and requirements for the design and operation of autonomous ships. The aim of this study is to comprehensively analyse the existing maritime safety and security regulatory framework including the national and international regulations for designing, building, testing and operating the unmanned next-generation inland waterways (IWW) vessel considered in the AUTOSHIP project operating in the Flemish inland waters. This study initiates with the identification of the regulatory bodies controlling the operation and testing of the investigated vessel and then identifies barriers in regulations where amendments or new developments are required. Subsequently, a strategy for overcoming these barriers is proposed. The main regulatory gaps that are identified include the requirements for navigation, emergency and environment protection functions, where new definitions are required for unmanned ship operations (e.g. master, crew, remote control centre). Moreover, some of the regulations explicitly specify the existence of crew on the ships for navigation, emergency and environment protection functions. A three-phase strategy is proposed to overcome the current regulatory barriers.
Effectively addressing safety, security and cyber-security challenges is quintessential for progressing the development of next generation maritime autonomous shipping. This study aims at developing a novel hybrid, semi-structured process for the hazardous scenarios identification and ranking. This method integrates the operational and functional hazard identification approaches, whilst considering the safety, security and cybersecurity hazards. This method is applied to comprehensively assess the safety of an autonomous inland waterways ship at a preliminary design phase. The hazardous scenarios are identified and ranked by a number of experts participating in a series of sessions. The identified hazards risk is estimated considering the frequency and severity indices, whereas their uncertainty is estimated by employing the standard deviations in these two indices among the experts ranking results. Epistemic uncertainty is also considered during ranking. Risk control measures are proposed to de-risk the critical hazards. The results reveal that the most critical hazards from the safety, security and cybersecurity perspectives pertain to the situation awareness, remote control and propulsion functions. Based on the derived results, design enhancements along with high-level testing scenarios for the investigated autonomous ship are also proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.