In statistical signal processing, hybrid parameter estimation refers to the case where the parameters vector to estimate contains both non-random and random parameters. As a contribution to the hybrid estimation framework, we introduce a recursive hybrid Cramér Rao lower bounds for discrete-time Markovian dynamic systems depending on unknown deterministic parameters. Additionnally, the regularity conditions required for its existence and its use are clarified.
This letter investigates hybrid lower bounds on the mean square error in order to predict the so-called threshold effect. A new family of tighter hybrid large error bounds based on linear transformations (discrete or integral) of a mixture of the McAulay-Seidman bound and the Weiss-Weinstein bound is provided in multivariate parameters case with multiple test points. For use in applications, we give a closed-form expression of the proposed bound for a set of Gaussian observation models with parameterized mean, including tones estimation which exemplifies the threshold prediction capability of the proposed bound.Index Terms-Hybrid bounds, MAPMLE, mean-square-error bounds, parameter estimation, threshold SNR.
This article investigates hybrid lower bounds in order to predict the estimators mean square error threshold effect. A tractable and computationally efficient form is derived. This form combines the Barankin and the Weiss-Weinstein bounds. This bound is applied to a frequency estimation problem for which a closed-form expression is provided. A comparison with results on the hybrid Barankin bound shows the superiority of this new bound to predict the mean square error threshold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.