Three silicon oxycarbide glasses (SiCO) with increasing C content were obtained through pyrolysis in inert atmosphere at 1000 °C of sol-gel derived siloxane networks containing Si-CH 3 and Si-H bonds. The glasses were further annealed at 1200, 1400, and 1500 °C to follow their evolution at high temperature. Quantitative information concerning the structure of glasses before and after annealing at high temperature was collected with a wide range of techniques (some of them used for the first time in this field) with the aim of probing the following: (i) the short-range order and chemical composition ( 29 Si and 1 H MAS NMR, RDF derived from X-ray and neutron scattering, inelastic neutron scattering, FT-IR, and elemental analysis), and (ii) the long-range order (X-ray and neutron diffraction) and microstructural features (HR-TEM combined with electron diffraction, Raman, porosity, and surface area measurements). This extensive collection of data, carried out on the same set of specimens, provided detailed and sound structural information on nearly-stoichiometric SiCO glasses and their high-temperature behavior.
We present experimental and analytical results for the pyrolysis reactions underlying the conversion of a cross‐linked polymer into an amorphous ceramic material. The activation energies, obtained from thermogravimetric data, and chemical analysis of the volatiles by mass spectroscopy are used to identify the reaction pathways. The reaction is determined to be first‐order, which is consistent with its solid‐state nature. The magnitude of the weight loss is analyzed to calculate the number of molecular sites in the polymer that participate in the reaction. The experiments were conducted on a polymer made from silsesquioxanes that convert into silicon oxycarbide ceramics on pyrolysis. The results show that <2.5% of the silicon atoms in the polymer are removed as volatile silanes, and less than one‐half of the carbon atoms are lost as methane. These results are a first step in understanding the molecular basis for the ceramic yield, as well as the evolution of the nanostructure as the material changes from an organic into a ceramic state by reactions that can occur at <850°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.