High doses of ionizing radiation clearly produce deleterious consequences in humans, including, but not exclusively, cancer induction. At very low radiation doses the situation is much less clear, but the risks of low-dose radiation are of societal importance in relation to issues as varied as screening tests for cancer, the future of nuclear power, occupational radiation exposure, frequent-flyer risks, manned space exploration, and radiological terrorism. We review the difficulties involved in quantifying the risks of low-dose radiation and address two specific questions. First, what is the lowest dose of x-or ␥-radiation for which good evidence exists of increased cancer risks in humans? The epidemiological data suggest that it is Ϸ10 -50 mSv for an acute exposure and Ϸ50 -100 mSv for a protracted exposure. Second, what is the most appropriate way to extrapolate such cancer risk estimates to still lower doses? Given that it is supported by experimentally grounded, quantifiable, biophysical arguments, a linear extrapolation of cancer risks from intermediate to very low doses currently appears to be the most appropriate methodology. This linearity assumption is not necessarily the most conservative approach, and it is likely that it will result in an underestimate of some radiation-induced cancer risks and an overestimate of others.
The active transport and internal binding of the Ca2+ analogue Mn2+ by rat liver mitochondria were monitored with electron paramagnetic resonance. The binding of transported Mn2+ depended strongly on internal pH over the range 7.7-8.9. Gradients of free Mn2+ were compared with K+ gradients measured on valinomycin-treated samples. In the steady state, the electrochemical Mn2+ activity was larger outside than inside the mitochondria. The observed gradients of free Mn2+ and of H+ could not be explained by a single "passive" uniport or antiport mechanism of divalent cation transport. This conclusion was further substantiated by observed changes in steady-state Ca2+ and Mn2+ distributions induced by La3+ and ruthenium red. Ruthenium red reduced total Ca2+ or Mn2+ uptake, and both inhibitors caused release of divalent cation from preloaded mitochondria. A model is proposed in which divalent cations are transported by at least two mechanisms: (1) a passive uniport and (2) and active pump, cation antiport or anion symport. The former is more sensitive to La3+ and ruthenium red. Under energized steady-state conditions, the net flux of Ca2+ or Mn2+ is inward over (1) and outward over (2). The need for more than one transport system inregulating cytoplasmic Ca2+ is discussed.
Divalent cation association to sonicated phospholipid liposomes has been examined with electron paramagnetic spectroscopy. Spectra were obtained suggesting that, in some cases, divalent cations associated with acidic phospholipid head groups are highly mobile. Using the amplitude of its characteristic sextet signal as a measure of free Mn(H2O)+6+, the apparent affinities of cardiolipin and phosphatidylserine for Mn2+ were measured as a function of monovalent electrolyte. Monovalent cations having smaller nonhydrated radii were more effective in displacing Mn from the phospholipids. Under conditions of low divalent cation concentrations, it is shown that the Gouy-Chapman diffuse double layer theory predicts a Mn-affinity (KA) inversely proportional to the square of monovalent salt concentration. Although this relationship was closely obeyed for Mn binding to cardiolipin, the fall-off in KA with added sodium chloride was slower in the cases of Mn binding to phosphatidylserin or phosphatidic acid. When phosphatidylcholine or cholesterol was incorporated into mixed vesicles along with a fixed amount of charged phospholipid, the Mn-binding strength was roughly proportional to the weight fraction of the latter. This result is consistent with: (1) a random dispersal of lipids in the bilayer, and (2) a 1:2 divalent cation-phospholipid interaction.
ᮀ The U.S. Environmental Protection Agency (EPA) bases its risk assessments, regulatory limits, and nonregulatory guidelines for population exposures to low level ionizing radiation on the linear no-threshold (LNT) hypothesis, which assumes that the risk of cancer due to a low dose exposure is proportional to dose, with no threshold. The use of LNT for radiation protection purposes has been repeatedly endorsed by authoritative scientific advisory bodies, including the National Academy of Sciences' BEIR Committees, whose recommendations form a primary basis of EPA's risk assessment methodology. Although recent radiobiological findings indicate novel damage and repair processes at low doses, LNT is supported by data from both epidemiology and radiobiology. Given the current state of the science, the consensus positions of key scientific and governmental bodies, as well as the conservatism and calculational convenience of the LNT assumption, it is unlikely that EPA will modify this approach in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.