Over the past decade, many researchers have come up with different implementations of systems for decoding covert or imagined speech from EEG (electroencephalogram). They differ from each other in several aspects, from data acquisition to machine learning algorithms, due to which, a comparison between different implementations is often difficult. This review article puts together all the relevant works published in the last decade on decoding imagined speech from EEG into a single framework. Every important aspect of designing such a system, such as selection of words to be imagined, number of electrodes to be recorded, temporal and spatial filtering, feature extraction and classifier are reviewed. This helps a researcher to compare the relative merits and demerits of the different approaches and choose the one that is most optimal. Speech being the most natural form of communication which human beings acquire even without formal education, imagined speech is an ideal choice of prompt for evoking brain activity patterns for a BCI (brain-computer interface) system, although the research on developing real-time (online) speech imagery based BCI systems is still in its infancy. Covert speech based BCI can help people with disabilities to improve their quality of life. It can also be used for covert communication in environments that do not support vocal communication. This paper also discusses some future directions, which will aid the deployment of speech imagery based BCI for practical applications, rather than only for laboratory experiments.
This paper proposes a novel approach that uses deep neural networks for classifying imagined speech, significantly increasing the classification accuracy. The proposed approach employs only the EEG channels over specific areas of the brain for classification, and derives distinct feature vectors from each of those channels. This gives us more data to train a classifier, enabling us to use deep learning approaches. Wavelet and temporal domain features are extracted from each channel. The final class label of each test trial is obtained by applying a majority voting on the classification results of the individual channels considered in the trial. This approach is used for classifying all the 11 prompts in the KaraOne dataset of imagined speech. The proposed architecture and the approach of treating the data have resulted in an average classification accuracy of 57.15%, which is an improvement of around 35% over the stateof-the-art results.Index Terms-imagined speech, brain-computer interaction, deep neural network, commone spatial pattern, EEG
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.