The in vivo efficacy of engineered tissue constructs depends largely on their integration with the host vasculature. Prevascularisation has been noted to facilitate integration of the constructs via anastomosis of preformed microvascular networks. Here we report a technique to fabricate aligned, spatially defined prevascularised tissue constructs with endothelial vessels by assembling individually tailored cell-laden polyelectrolyte hydrogel fibres. Stable, aligned endothelial vessels form in vitro within these constructs in 24 h, and these vessels anastomose with the host circulation in a mouse subcutaneous model. We create vascularised adipose and hepatic tissues by co-patterning the respective cell types with the preformed endothelial vessels. Our study indicates that the formation of aligned endothelial vessels in a hydrogel is an efficient prevascularisation approach in the engineering of tissue constructs.
In multi‐interfacial polyelectrolyte complexation (MIPC), fusion of nascent fibers from multiple interfaces brings the interfaces to a point from which a composite fiber is drawn. MIPC applied to two, three, and four polyelectrolyte complex interfaces leads to various patterned multicomponent fibers. Cells encapsulated in these fibers exhibit migration, aggregation and spreading in relation to the initial cell or matrix pattern.
We have engineered structurally well-defined tunable chondroitin sulfate glycopeptides using a polyproline scaffold to selectively modulate the NGF-mediated neuronal signaling pathway.
The secondary structure of the coiled coil peptides was regulated by altering the azido content at the hydrophobic core. These peptides were further investigated to form higher-order assemblies presumably via azido-mediated interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.