Acoustic rhinometry (AR) is a recently developed objective technique for assessment of geometry of the nasal cavity. The technique is based on the analysis of sound waves reflected from the nasal cavities. It measures cross-sectional areas and nasal volume (NV). To obtain dependable assessments of nasal resistance by rhinomanometry or cross-sectional area measurements by AR, it is essential that the structural relations of the compliant vestibular region remain undisturbed by the measuring apparatus. The use of nozzles in making these measurements carries a great risk of direct distortion of the nasal valve. We used a nasal adapter that does not invade the nasal cavity and a chin support that stabilizes the head. In 51 healthy nasal cavities, the average minimum cross-sectional area (MCA) was 0.62 cm2 at 2.35 cm from the nostril and 0.67 cm2 at 2 cm from the nostril, respectively, before and after topical decongestion of the nasal mucosa. The MCA and NV findings in this group were significantly higher than MCA and NV (P < 0.001) in people with structural or mucosal abnormalities before mucosal decongestion. After mucosal decongestion, the MCA and NV were significantly higher in healthy nasal cavities than in nasal cavities with structural abnormalities (P < 0.001) but were not higher than nasal cavities with mucosal abnormalities (MCA, P = 0.05; NV, P = 0.06). A nozzle was applied in 20 healthy nasal cavities after mucosal decongestion, and a significantly higher MCA was found compared to measurements made with the nasal adapter (P = 0.02). We conclude that the nasal adapter, which does not invade the nasal cavities, avoids the distortion of the nasal valve and gives more accurate results.
Warthin's tumor is controversial. This controversy is multifaceted and relates to all aspects of the tumor from its historical beginnings to its pathogenesis, investigations, and treatments. In this paper, an in depth study of Warthin's tumor has been made to help clarify these controversies.
The aims of this study are to assess nasal valve cross-sectional areas in healthy noses and in patients with nasal obstruction after rhinoplasty and to evaluate the effect of an external nasal dilator on both healthy and obstructive nasal valves. Subjects consisted of (i) volunteers with no nasal symptoms, nasal cavities unremarkable to rhinoscopy and normal nasal resistance and (ii) patients referred to our clinic complaining of postrhinoplasty nasal obstruction. All subjects were tested before and after topical decongestion of the nasal mucosa and with an external nasal dilator. In 79 untreated healthy nasal cavities the nasal valve area showed two constrictions: the proximal constriction averaged 0.78 cm2 cross-section and was situated 1.18 cm from the nostril, the distal constriction averaged 0.70 cm2 cross-section at 2.86 cm from the nostril. Mucosal decongestion increased cross-sectional area of the distal constriction significantly (p < 0.0001) but not the proximal. External dilation increased cross-sectional area of both constrictions significantly (p < 0.0001). In 26 post-rhinoplasty obstructed nasal cavities, only a single constriction was detected, averaging 0.34 cm2 cross-section at 2.55 cm from the nostril and 0.4 cm2 at 2.46 cm from the nostril, before and after mucosal decongestion respectively. External dilation increased the minimum cross-sectional area to 0.64 cm2 in these nasal cavities (p < 0.0001). We conclude that the nasal valve area in patients with postrhinoplasty nasal obstruction is significantly smaller than in healthy nasal cavities as shown by acoustic rhinometry. Acoustic rhinometry objectively determines the structural and mucovascular components of the nasal valve area and external dilation is an effective therapeutical approach in the management of nasal valve obstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.