A vacuum test campaign evaluating the impulsive thrust performance of a tapered radio-frequency test article excited in the transverse magnitude 212 mode at 1937 MHz has been completed. The test campaign consisted of a forward thrust phase and reverse thrust phase at less than 8 × 10 −6 torr vacuum with power scans at 40, 60, and 80 W. The test campaign included a null thrust test effort to identify any mundane sources of impulsive thrust; however, none were identified. Thrust data from forward, reverse, and null suggested that the system was consistently performing with a thrust-to-power ratio of 1.2 0.1 mN∕kW. = vacuum permeability, N∕A 2 ρ ν = vacuum density, kg∕m 3
This paper will discuss the current viewpoint of the vacuum state and explore the idea of a "natural" vacuum as opposed to immutable, non-degradable vacuum. This concept will be explored for all primary quantum numbers to show consistency with observation at the level of Bohr theory. A comparison with the Casimir force per unit area will be made, and an explicit function for the spatial variation of the vacuum density around the atomic nucleus will be derived. This explicit function will be numerically modeled using the industry multi-physics tool, COMSOL, and the eigenfrequencies for the n = 1 to n = 7 states will be found and compared to expectation.
While conducting analysis related to a DARPA-funded project to evaluate possible structure of the energy density present in a Casimir cavity as predicted by the dynamic vacuum model, a micro/nano-scale structure has been discovered that predicts negative energy density distribution that closely matches requirements for the Alcubierre metric. The simplest notional geometry being analyzed as part of the DARPA-funded work consists of a standard parallel plate Casimir cavity equipped with pillars arrayed along the cavity mid-plane with the purpose of detecting a transient electric field arising from vacuum polarization conjectured to occur along the midplane of the cavity. An analytic technique called worldline numerics was adapted to numerically assess vacuum response to the custom Casimir cavity, and these numerical analysis results were observed to be qualitatively quite similar to a two-dimensional representation of energy density requirements for the Alcubierre warp metric. Subsequently, a toy model consisting of a 1 $$\upmu $$
μ
m diameter sphere centrally located in a 4 $$\upmu $$
μ
m diameter cylinder was analyzed to show a three-dimensional Casimir energy density that correlates well with the Alcubierre warp metric requirements. This qualitative correlation would suggest that chip-scale experiments might be explored to attempt to measure tiny signatures illustrative of the presence of the conjectured phenomenon: a real, albeit humble, warp bubble.
The quantum properties of the two-dimensional relativistic spherical membrane in phase space are analyzed using the Wigner function. Specifically, the true vacuum and rigid bubble nucleation cases are treated. Inspired by quantum cosmology, the Hartle-Hawking, Linde and Vilenkin boundary conditions are employed to calculate the bubble wave functions and their corresponding Wigner functions. Furthermore, the asymptotic behavior of the wave function using three different methods is explored and the Wigner functions are calculated numerically. Some aspects of the semiclassical properties for each boundary condition and their possible implications for quantum cosmology are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.