Abstract. Groundwater-dependent ecosystems (GDEs) have important functions in all climatic zones as they contribute to biological and landscape diversity and provide important economic and social services. Steadily growing anthropogenic pressure on groundwater resources creates a conflict situation between nature and man which are competing for clean and safe sources of water. Such conflicts are particularly noticeable in GDEs located in densely populated regions. A dedicated study was launched in 2010 with the main aim to better understand the functioning of a groundwaterdependent terrestrial ecosystem (GDTE) located in southern Poland. The GDTE consists of a valuable forest stand (Niepolomice Forest) and associated wetland (Wielkie Błoto fen). It relies mostly on groundwater from the shallow Quaternary aquifer and possibly from the deeper Neogene (Bogucice Sands) aquifer. In July 2009 a cluster of new pumping wells abstracting water from the Neogene aquifer was set up 1 km to the northern border of the fen. A conceptual model of the Wielkie Błoto fen area for the natural, pre-exploitation state and for the envisaged future status resulting from intense abstraction of groundwater through the new well field was developed. The main aim of the reported study was to probe the validity of the conceptual model and to quantify the expected anthropogenic impact on the studied GDTE. A wide range of research tools was used. The results obtained through combined geologic, geophysical, geochemical, hydrometric and isotope investigations provide strong evidence for the existence of upward seepage of groundwater from the deeper Neogene aquifer to the shallow Quaternary aquifer supporting the studied GDTE. Simulations of the groundwater flow field in the study area with the aid of a 3-D flow and transport model developed for Bogucice Sands (Neogene) aquifer and calibrated using environmental tracer data and observations of hydraulic head in three different locations on the study area, allowed us to quantify the transient response of the aquifer to operation of the newly established Wola Batorska well field. The model runs reveal the presence of upward groundwater seepage to the shallow Quaternary aquifer of the order of 440 m 3 d −1 . By the end of the simulation period (2029), with continuous operation of the Wola Batorska well field at maximum permissible capacity (ca. 10 000 m 3 d −1 ), the direction of groundwater seepage will change sign (total change of the order of 900 m 3 d −1 ). The water table drawdown in the study area will reach ca. 30 cm. This may have significant adverse effects on functioning of the studied GDTE.
The paper presents the results of geophysical research conducted in the region where the so called ‘Gold Train’ was believed to be located. The surveyed site was located in Wałbrzych, at the 65th kilometre of the railway connecting Wrocław and Wałbrzych. The aim of the research was to verify the legend of the existence of the so called ‘Gold Train’ that was supposed to be located in the tunnel. The ‘Gold Train’ was believed to contain Wrocław's treasures. Three geophysical methods were used. Microgravimetric and GPR (ground‐penetrating radar) methods were applied to locate the void (tunnel), while the search for the train (a metal object) was conducted with the use of a magnetic method. Detailed geodetic measurements were used, including, among others, laser scanning. Due to complex terrain and geological structure, the negative results of the microgravimetric research was conclusive only in respect of one of the profiles. Due to high attenuation of electromagnetic wave by a shallow geological structure the scope of the GPR method was limited, however it was sufficient to confirm that such a tunnel does not exist. Despite difficulties related to electric lines in the researched area, conclusive results were obtained using the magnetic method. No magnetic anomaly with a shape or amplitude indicative of a steel train was identified.
Analysis of the finite-difference time domain (FDTD) numerical simulation of ground penetrating radar (GPR) measurement for locating burial sites is described in this paper. Effective, efficient, and reliability interpretation of GPR field data obtained from clandestine sites is very crucial in forensic investigations. The main goal of the study is the prediction of the change in the interaction of the electromagnetic incident on changes in buried bodies with time. In order to achieve this, the research involves the modeling of the GPR electromagnetic pulse energy responses to simulated changes in buried body with time with a view to understand what the results of real field measurement will give. The field measurements were conducted with GPR system manufactured by Mala Geoscience with antennae frequency of 500 MHz, 250 MHz, and 100 MHz. Responses from both synthetic and field radargrams depict the target was intercepted at same time (approximately 25 ns). The results have demonstrated that FDTD modeling is an important tool for enhancing the reliability of GPR data interpretation particularly for forensic study.
Abstract. Ground-penetrating radar (GPR) is commonly used for locating burial sites. In this article, we acquired radargrams at a site where a domestic pig cadaver was buried. The measurements were conducted with the ProEx System GPR manufactured by the Swedish company Mala Geoscience with an antenna of 500MHz. The event corresponding to the pig can be clearly seen in the measurements. In order to improve the interpretation, the electromagnetic field is compared to numerical simulations computed with the pseudo-spectral Fourier method. A geological model has been defined on the basis of assumed electromagnetic properties (permittivity, conductivity and magnetic permeability). The results, when compared with the GPR measurements, show a dissimilar amplitude behaviour, with a stronger reflection event from the bottom of the pit. We have therefore performed another simulation by decreasing the electrical conductivity of the body very close to that of air. The comparison improved, showing more reflections, which could be an indication that the body contains air or has been degraded to a certain extent that the electrical resistivity has greatly increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.