Prolidase [EC.3.4.13.9] is a cytosolic imidodipeptidase, which specifically splits imidodipeptides with C-terminal proline or hydroxyproline. The enzyme plays an important role in the recycling of proline from imidodipeptides (mostly derived from degradation products of collagen) for resynthesis of collagen and other proline-containing proteins. The enzyme activity is up-regulated by beta(1)-integrin receptor stimulation. The increase in the enzyme activity is due to its phosphorylation on serine/threonine residues. Collagen is not only structural component of extracellular matrix. It has been recognized as a ligand for integrin receptors, which play an important role in signaling that regulate ion transport, lipid metabolism, kinase activation and gene expression. Therefore, changes in the quantity, structure and distribution of collagens in tissues may affect cell signaling, metabolism and function. Several line of evidence suggests that prolidase activity may be a step-limiting factor in the regulation of collagen biosynthesis. It has been shown in different physiologic and pathologic conditions. It is of great importance during wound healing, inflammation, aging, tissue fibrosis and possibly skeletal abnormalities seen in Osteogenesis Imperfecta. The mechanism of prolidase-dependent regulation of collagen biosynthesis was found at both transcriptional and post-transcriptional levels. In this study, we provide evidence for prolidase-dependent transcriptional regulation of collagen biosynthesis. The mechanism was found at the level of NF-kB, known inhibitor of type I collagen gene expression. Modulation of integrin-dependent signaling by stimulatory (i.e. thrombin) or inhibitory (i.e. echistatin) beta(1)-integrin ligands or by nitric oxide donors (i.e. DETA/NO) affect prolidase at post-transcriptional level. All those factors may represent novel approach to pharmacotherapy of connective tissue disorders.
Prolidase (EC 3.4.13.9) is a ubiquitously distributed imidodipeptidase that catalyzes the hydrolysis of C-terminal proline or hydroxyproline containing dipeptides. The enzyme plays an important role in the recycling of proline for collagen synthesis and cell growth. An increase in enzyme activity is correlated with increased rates of collagen turnover indicative of extracellular matrix (ECM) remodeling, but the mechanism linking prolidase activity and ECM is poorly understood. Thus, the effect of ECM-cell interaction on intracellular prolidase activity is of special interest. In cultured human skin fibroblasts, the interaction with ECM and, more specifically, type I collagen mediated by the  1 integrin receptor regulates cellular prolidase activity. Supporting evidence comes from the following observations: 1) in sparse cells with a low amount of ECM collagen or in confluent cells in which ECM collagen was removed by collagenase (but not by trypsin or elastase) treatment, prolidase activity was decreased; 2) this effect was reversed by the addition of type I collagen or  1 integrin antibody (agonist for  1 integrin receptor); 3) sparse cells (with typically low prolidase activity) showed increased prolidase activity when grown on plates coated with type I collagen or on type IV collagen and laminin, constituents of basement membrane; 4) the relative differences in prolidase activity due to collagenase treatment and subsequent recovery of the activity by  1 integrin antibody or type I collagen treatment were accompanied by parallel differences in the amount of the enzyme protein recovered from these cells, as shown by Western immunoblot analysis. Thus, we conclude that prolidase activity responded to ECM metabolism (tissue remodeling) through signals mediated by the integrin receptor.
There is a great interest in searching for diagnostic biomarkers in prostate cancer patients. The aim of the pilot study was to evaluate free amino acid profiles in their serum and urine. The presented paper shows the first comprehensive analysis of a wide panel of amino acids in two different physiological fluids obtained from the same groups of prostate cancer patients (n = 49) and healthy men (n = 40). The potential of free amino acids, both proteinogenic and non-proteinogenic, as prostate cancer biomarkers and their utility in classification of study participants have been assessed. Several metabolites, which deserve special attention in the further metabolomic investigations on searching for prostate cancer markers, were indicated. Moreover, free amino acid profiles enabled to classify samples to one of the studied groups with high sensitivity and specificity. The presented research provides a strong evidence that ethanolamine, arginine and branched-chain amino acids metabolic pathways can be a valuable source of markers for prostate cancer. The altered concentrations of the above-mentioned metabolites suggest their role in pathogenesis of prostate cancer and they should be further evaluated as clinically useful markers of prostate cancer.
This review is focused on recent data on the role of proline (Pro) in collagen biosynthesis and cellular metabolism. It seems obvious that one of the main substrates for collagen biosynthesis Pro is required to form collagen molecule. The question raised in this review is whether the Pro for collagen biosynthesis is synthesized "de novo", comes directly from degraded proteins or it is converted from other amino acids. Recent data provided evidence that extracellular Pro (added to culture medium) had significant, but relatively little impact on collagen biosynthesis in fibroblasts (the main collagen synthesized cells) cultured in the presence of glutamine (Gln). However, extracellular Pro drastically increased collagen biosynthesis in the cells cultured in Gln-free medium. It suggests that Pro availability determines the rate of collagen biosynthesis and demand for Pro in fibroblasts is predominantly met by conversion from Gln. The potential mechanism of this process as well as possible implication of this knowledge in pharmacotherapy of connective tissue diseases is discussed in this review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.