A review presents applications of different forms of elemental carbon in lead-acid batteries. Carbon materials are widely used as an additive to the negative active mass, as they improve the cycle life and charge acceptance of batteries, especially in high-rate partial state of charge (HRPSoC) conditions, which are relevant to hybrid and electric vehicles. Carbon nanostructures and composite materials can also play such a role. The positive active mass additions are generally less beneficial than the negative ones. Carbon can also be applied as a material for reticulated current collectors for both negative and positive plates. This modern technology allows to increase the battery specific energy and active mass utilization. Batteries with such collectors can show improved cycle life, owing to a better active mass mechanical support. Other recent use of carbon in secondary batteries is as supercapacitor electrodes. They can replace the negative plate or be connected in parallel with such a lead plate. These solutions increase the specific power and HRPSoC performance. Presented new carbon-based technologies in a construction of lead-acid batteries can significantly improve their performance and allow a further successful competition with other battery systems.
Rechargeable power sources are an essential element of large-scale energy systems based on renewable energy sources. One of the major challenges in rechargeable battery research is the development of electrode materials with good performance and low cost. Carbon-based materials have a wide range of properties, high electrical conductivity, and overall stability during cycling, making them suitable materials for batteries, including stationary and large-scale systems. This review summarizes the latest progress on materials based on elemental carbon for modern rechargeable electrochemical power sources, such as commonly used lead–acid and lithium-ion batteries. Use of carbon in promising technologies (lithium–sulfur, sodium-ion batteries, and supercapacitors) is also described. Carbon is a key element leading to more efficient energy storage in these power sources. The applications, modifications, possible bio-sources, and basic properties of carbon materials, as well as recent developments, are described in detail. Carbon materials presented in the review include nanomaterials (e.g., nanotubes, graphene) and composite materials with metals and their compounds.
Thionupharoline has been shown to be identical with 6-hydroxythiobinupharidine. The hydride reduction of hemiaminals of thiobinupharidine has been examined in ethanol solution. The steric course of reduction at C-6 is not nearly as selective as it has been reported to be in solution in methanol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.