Abstract. Structural colors are optical phenomena of physical origin, where microscale and nanoscale structures determine the reflected spectrum of light. Artificial structural colors have been realized within recent years. However, multilayer structures require substantial fabrication. Instead we considered one-layer surface textures of silicon. We explored four patterns of square structures in a square lattice with periods of 500, 400, 300, and 200 nm. The reflectivity and daylight-colors were measured and compared with simulations based on rigorously coupledwave analysis with excellent agreement. Based on the 200-nm periodic pattern, it was found that angle-independent specular colors up to 60 deg of incidence may be provided. The underlying mechanisms include (1) the suppression of diffraction and (2) a strong coupling of light to localized surface states. The strong coupling yields absorption anomalies in the visual spectrum, causing robust colors to be defined for a large angular interval. The result is a manifestation of a uniformly defined color, similar to pigment-based colors. These mechanisms hold potential for color engineering and can be used to explain and predict the structural-color appearance of silicon-based textures for a wide range of structural parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.