The incorporation of biochar into soils has been proposed as a means to sequester carbon from the atmosphere. An added environmental benefit is that biochar has been shown to increase soil retention of agrochemicals, and recent research has indicated that biochar may be effective in increasing soil retention of bacteria. In this study we investigate the transport behavior of O157:H7, serovar Typhimurium, and carboxylated polystyrene microspheres in water-saturated column experiments for two soils (fine sand and sandy loam) amended with 2% poultry litter or pine chip biochars pyrolyzed at 350 and 700°C. Adding poultry litter biochar pyrolyzed at 350°C did not improve soil retention of either bacteria in fine sand and even facilitated their transport in sandy loam. Addition of either biochar pyrolyzed at 700°C generally improved retention of bacteria in fine sand, with the pine chip biochars being more effective in limiting their transport. Results from the column studies and auxiliary batch studies suggest that changes in cell retention after biochar amendments were likely due to changes in bacterial attachment in the column and not to physical straining or changes in survivability. We also found that changes in bacterial hydrophobicity after biochar amendments were generally correlated with changes in bacterial retention. The influence of biochar amendment in increasing retention of both bacteria was generally more pronounced in fine sand and indicates that soil texture affects the transport behavior of bacteria through biochar-amended soils.
Biofilms have devastating impacts on many industries such as increased fuel consumption and damage to surfaces in maritime industries. Ideal biofouling management is inhibition of initial bacterial attachment. The attachment of a model marine bacterium (Halomonas pacfica g) was investigated to evaluate the potential of these new novel surfaces to resist initial bacterial adhesion. Novel engineered surfaces were generated via breakdown anodization or electrophoretic deposition, to modify three parameters: hydrophobicity, surface chemistry, and roughness. Mass transfer rates were determined using a parallel plate flow chamber under relevant solution chemistries. The greatest deposition was observed on the superhydrophilic surface, which had micro- and nano-scale hierarchical structures composed of titanium oxide deposited on a titanium plate. Conversely, one of the hydrophobic surfaces with micro-porous films overlaid with polydimethylsiloxane appeared to be most resistant to cell attachment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.