Abstract. Many applications in science require that computational models and data be combined. In a Bayesian framework, this is usually done by defining likelihoods based on the mismatch of model outputs and data. However, matching model outputs and data in this way can be unnecessary or impossible. For example, using large amounts of steady state data is unnecessary because these data are redundant. It is numerically difficult to assimilate data in chaotic systems. It is often impossible to assimilate data of a complex system into a low-dimensional model. As a specific example, consider a low-dimensional stochastic model for the dipole of the Earth's magnetic field, while other field components are ignored in the model. The above issues can be addressed by selecting features of the data, and defining likelihoods based on the features, rather than by the usual mismatch of model output and data. Our goal is to contribute to a fundamental understanding of such a feature-based approach that allows us to assimilate selected aspects of data into models. We also explain how the feature-based approach can be interpreted as a method for reducing an effective dimension and derive new noise models, based on perturbed observations, that lead to computationally efficient solutions. Numerical implementations of our ideas are illustrated in four examples.
Quantitative X-ray radiographic imaging systems that utilize a charged couple device (CCD) camera connected to a thick, monolithic scintillator can exhibit blur that varies spatially across the field of view, especially for thick scintillators used in pulse-power radiography of dynamically compressed objects. A three-point approach to estimating and accounting for this effect is demonstrated by (a) using a local estimation technique to measure the effect of blurring a calibration object at key locations across the field of view, (b) combining each of the local estimates into a spatially varying blurring function via partitions of unity interpolation, and (c) resolving the effects of that blur on the image by solving an ill-posed inverse problem using a spatially varying regularization term. The technique is demonstrated on synthetic examples and actual radiographs collected at the Naval Research Laboratory's (NRL) Mercury pulsed power facility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.