Background: The retinal and brain histopathological findings in children who died from cerebral malaria (CM) have been recently described. Similar changes occur in both structures, but the findings have not been directly compared in the same patients. In this study, we compared clinical retinal findings and retinal and cerebral histopathological changes in a series of patients in Blantyre, Malawi, who died of CM.Methods: The features systematically compared in the same patient were: (1) clinical, gross and microscopic retinal hemorrhages with microscopic cerebral hemorrhages, (2) retinal and cerebral hemorrhage-associated and -unassociated axonal damage, and fibrinogen leakage, and (3) differences in the above features between the pathological categories of CM without microvascular pathology (CM1) and CM with microvascular pathology (CM2) in retina and brain.Results: Forty-seven patients were included: seven CM1, 28 CM2, and 12 controls. In the 35 malaria cases retinal and cerebral pathology correlated in all features except for non-hemorrhage associated fibrinogen leakage. Regarding CM1 and CM2 cases, the only differences were in the proportion of patients with hemorrhage-associated cerebral pathology, and this was expected, based on the definitions of CM1 and CM2. The retina did not show this difference. Non-hemorrhage associated pathology was similar for the two groups.Comment: As postulated, histopathological features of hemorrhages, axonal damage and non-hemorrhage associated fibrinogen leakage correlated in the retina and brain of individual patients, although the difference in hemorrhages between the CM1 and CM2 groups was not consistently observed in the retina. These results help to underpin the utility of ophthalmoscopic examination and fundus findings to help in diagnosis and assessment of cerebral malaria patients, but may not help in distinguishing between CM1 and CM2 patients during life.
Background: COVID 19 caused by the novel coronavirus SARS CoV 2 has caused the greatest public health emergency of our time. Accurate laboratory detection of the virus is critical in order to contain the spread. Although real time polymerase chain reaction (PCR) has been the cornerstone of laboratory diagnosis, there have been conflicting reports on the diagnostic accuracy of this method. Methods: A retrospective review was performed on all hospitalized patients tested for SARS CoV 2 (at St. Pauls Hospital in Vancouver, BC) from March 13 to April 12, 2020. Diagnostic accuracy of initial PCR on nasopharyngeal (NP) swabs was determined against a composite reference standard which included a clinical assessment of the likelihood of COVID 19 by medical experts, initial and repeat PCR, and post-hoc serological testing. Results: A total of 323 patients were included in the study, 33 (10.2%) tested positive and 290 (89.8%) tested negative by initial PCR. Patients testing positive were more likely to exhibit features of cough (66.7% vs 39.3%), shortness of breath (63.6% vs 35.9%), fever (72.7% vs 27.6%), radiographic findings (83.3% vs 39.6%) and severe outcomes including ICU admission (24.2% vs 9.7%) and mortality (21.2% vs 6.2%) compared to patients testing negative. Serology was performed on 90 patients and correlation between serology and PCR was 98.9%. There were 90 patients included in the composite reference standard. Compared to the composite reference standard, initial PCR had sensitivity of 94.7% (95% CI 74.0 to 99.9%), specificity of 100% (95% CI 94.9 to 100%), positive predictive value of 100% (95% CI 81.5 to 100%) and a negative predictive value of 98.6% (95% CI 92.5 to 100%). Discussion: Our study showed high sensitivity of PCR on NP swab specimens when compared to composite reference standard in hospitalized patients. High correlation of PCR with serological testing further increased confidence in the diagnostic reliability of properly collected NP swabs.
Hyperthermia potentiates the influence of CO(2) on pulmonary ventilation (.V(E)). It remains to be resolved how skin and core temperatures contribute to the elevated exercise ventilation response to CO(2). This study was conducted to assess the influences of mean skin temperature (_T(SK)) and end-tidal PCO(2) (P(ET)CO(2)) on .V(E) during submaximal exercise with a normothermic esophageal temperature (T(ES)). Five males and three females who were 1.76 +/- 0.11 m tall (mean +/- SD), 75.8 +/- 15.6 kg in weight and 22.0 +/- 2.2 years of age performed three 1 h exercise trials in a climatic chamber with the relative humidity (RH) held at 31.5 +/- 9.5% and the ambient temperature (T (AMB)) maintained at one of 25, 30, or 35 degrees C. In each trial, the volunteer breathed eucapnic air for 5 min during a rest period and subsequently cycle ergometer exercised at 50 W until T (ES) stabilized at approximately 37.1 +/- 0.4 degrees C. Once T (ES) stabilized in each trial, the volunteer breathed hypercapnic air twice for approximately 5 min with P(ET)CO(2) elevated by approximately +4 or +7.5 mmHg. The significantly (P < 0.05) different increases of P(ET)CO(2) of +4.20 +/- 0.49 and +7.40 +/- 0.51 mmHg gave proportionately larger increases in .V(E) of 10.9 +/- 3.6 and 15.2 +/- 3.6 L min(-1) (P = 0.001). This hypercapnia-induced hyperventilation was uninfluenced by varying the _T(SK) to three significantly different levels (P < 0.001) of 33.2 +/- 1.2 degrees C, to 34.5 +/- 0.8 degrees C to 36.4 +/- 0.5 degrees C. In conclusion, the results support that skin temperature between approximately 33 and approximately 36 degrees C has neither effect on pulmonary ventilation nor on hypercapnia-induced hyperventilation during a light exercise with a normothermic core temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.