Membranes of suspended two-dimensional materials show a large variability in mechanical properties, in part due to static and dynamic wrinkles. As a consequence, experiments typically show a multitude of nanomechanical resonance peaks, which make an unambiguous identification of the vibrational modes difficult. Here, we probe the motion of graphene nanodrum resonators with spatial resolution using a phase-sensitive interferometer. By simultaneously visualizing the local phase and amplitude of the driven motion, we show that unexplained spectral features represent split degenerate modes. When taking these into account, the resonance frequencies up to the eighth vibrational mode agree with theory. The corresponding displacement profiles, however, are remarkably different from theory, as small imperfections increasingly deform the nodal lines for the higher modes. The Brownian motion, which is used to calibrate the local displacement, exhibits a similar mode pattern. The experiments clarify the complicated dynamic behavior of suspended two-dimensional materials, which is crucial for reproducible fabrication and applications.
We probe dephasing mechanisms within a quantum network node consisting of a single nitrogenvacancy centre electron spin that is hyperfine coupled to surrounding 13 C nuclear-spin quantum memories. Previous studies have analysed memory dephasing caused by the stochastic electron-spin reset process, which is a component of optical internode entangling protocols. Here, we find, by using dynamical decoupling techniques and exploiting phase matching conditions in the electron-nuclear dynamics, that control infidelities and quasi-static noise are the major contributors to memory dephasing induced by the entangling sequence. These insights enable us to demonstrate a 19-fold improved memory performance which is still not limited by the electron reinitialization process. We further perform pump-probe studies to investigate the spin-flip channels during the optical electron spin reset. We find that spin-flips occur via decay from the meta-stable singlet states with a branching ratio of 8(1):1:1, in contrast with previous work. These results allow us to formulate straightforward improvements to diamond-based quantum networks and similar architectures. arXiv:1802.05996v1 [quant-ph]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.