Ventricular assist devices have become standard therapy for patients with advanced heart failure either as a bridge to transplantation or destination therapy. Despite the functional and biologic evidence of reverse cardiac remodeling, few patients actually proceed to myocardial recovery, and even fewer to the point of having their device explanted. An enhanced understanding of the biology and care of the mechanically supported patient has redirected focus on the possibility of using ventricular assist devices as a bridge to myocardial recovery and removal. Herein, we review the current issues and approaches to transforming myocardial recovery to a practical reality.
In children, pancreatic pseudocysts can frequently be managed without surgery regardless of size or complexity of the pseudocyst. When an intervention is needed, percutaneous drainage can be performed successfully, avoiding the need for major surgical intervention in the majority of patients.
Continuous-flow left ventricular assist devices (LVADs) subject elements of the blood to significant stress, resulting in clinically significant and subclinical hemolysis. We sought to prospectively determine if baseline red cell osmotic fragility of an advanced heart failure patient - influences the hemolytic response to LVAD support. Osmotic fragility assesses the degree of red blood cell hemolysis under varying degrees of osmotic stress. Assays were prospectively obtained on 50 consecutive patients prior to placement of continuous flow LVADs: HeartMate II (n=34), Jarvik 2000 (n=5), HeartWare (n=6). The mean age was 60.2 years, 87% were male, and 47% were nonischemic. The overall median post-LVAD LDH was 583 (427–965) and there was no difference among devices. Mean hemolysis was 15.68 ± 12.96% at 0.45%NaCL (the inflection point of the osmotic fragility hemolysis curve). A scatter plot did not reveal any relationship between pre-op osmotic fragility and post-op LDH. Linear regression confirmed no predictive relationship (p=0.71). In conclusion, preoperative variations in osmotic fragility do not appear to account for differences in hemolysis following VAD placement. Mechanical forces generated by existing LVADs result in similar levels of biochemical hemolysis, as assessed by LDH, despite baseline differences in a patient’s osmotic red cell fragility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.