Rare earth elements (REEs) are used as tracers for oceanic trace element cycling. However, the low (picomolar level) dissolved REE concentrations and time-consuming methods have so far hindered their extensive use in marine studies. This study reports the first application of the automated seaFAST-pico system (Elemental Scientific Inc.) in offline mode and using multi-element isotope dilution inductively coupled plasma-mass spectrometry (ID ICP-MS) for the robust and rapid pre-concentration, purification, and analysis of dissolved REEs from small volumes of seawater (11-12 mL). Accuracy of our new method is checked with replicates of GEOTRACES intercalibration seawater from BATS (Bermuda Atlantic Time Series, North Atlantic) at 15 m and 2000 m water depths. Our results show excellent agreement (within the analytical uncertainty, 2σ SD) with the published intercalibrated values from the GEOTRACES intercalibration study. Replicates of GEOTRACES intercalibration seawater from SAFe at 3000 m water depth (Sampling and Analysis of Iron, North Pacific) indicate a procedural long-term error of ≤3.9% 2σ RSD for all REEs, except for Ce and Gd. An international intercomparison from 4 labs using SAFe 3000 m seawater aliquots, 2 of which also use the seaFAST-pico system in offline mode, and different pre-concentration, purification, and analytical methods shows excellent agreement between REE concentrations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.