The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway is a multifaceted transduction system that regulates cellular responses to incoming signaling ligands. STAT3 is a central member of the JAK/STAT signaling cascade and has long been recognized for its increased transcriptional activity in cancers and autoimmune disorders but has only recently been in the spotlight for its role in the progression of kidney disease. Although genetic knockout and manipulation studies have demonstrated the salutary benefits of inhibiting STAT3 activity in several kidney disease models, pharmacological inhibition has yet to make it to the clinical forefront. In recent years, significant effort has been aimed at suppressing STAT3 activation for treatment of cancers, which has led to the development of a wide variety of STAT3 inhibitors, but only a handful have been tested in kidney disease models. Here, we review the detrimental role of dysregulated STAT3 activation in a variety of kidney diseases and the current progress in the treatment of kidney diseases with pharmacological inhibition of STAT3 activity.
Pathologic glomerular epithelial cell (GEC) hyperplasia is characteristic of both rapidly progressive glomerulonephritis (RPGN) and subtypes of focal segmental glomerulosclerosis (FSGS). Although initial podocyte injury resulting in activation of STAT3 signals GEC proliferation in both diseases, mechanisms regulating this are unknown. Here, we show that the loss of Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor, enhances GEC proliferation in both RPGN and FSGS due to dysregulated STAT3 signaling. We observed that podocyte-specific knockdown of Klf4 (C57BL/6J) increased STAT3 signaling and exacerbated crescent formation after nephrotoxic serum treatment. Interestingly, podocyte-specific knockdown of Klf4 in the FVB/N background alone was sufficient to activate STAT3 signaling, resulting in FSGS with extracapillary proliferation, as well as renal failure and reduced survival. In cultured podocytes, loss of KLF4 resulted in STAT3 activation and cell-cycle reentry, leading to mitotic catastrophe. This triggered IL-6 release into the supernatant, which activated STAT3 signaling in parietal epithelial cells. Conversely, either restoration of KLF4 expression or inhibition of STAT3 signaling improved survival in KLF4-knockdown podocytes. Finally, human kidney biopsy specimens with RPGN exhibited reduced KLF4 expression with a concomitant increase in phospho-STAT3 expression as compared with controls. Collectively, these results suggest the essential role of KLF4/STAT3 signaling in podocyte injury and its regulation of aberrant GEC proliferation.
Inducing podocyte-specific attenuates kidney injury by directly and indirectly upregulating genes critical for podocyte differentiation, suggesting that induction might be a potential strategy for treating proteinuric kidney disease.
Large epidemiological studies clearly demonstrate that multiple episodes of acute kidney injury contribute to the development and progression of kidney fibrosis. Although our understanding of kidney fibrosis has improved in the past two decades, we have limited therapeutic strategies to halt its progression. Myofibroblast differentiation and proliferation remain critical to progression of kidney fibrosis. Although canonical Wnt signaling can trigger activation of myofibroblasts in the kidney, mediators of Wnt inhibition in the resident progenitor cells are unclear. Recent studies demonstrate that the loss of a Kruppel-Like Factor 15 (KLF15), a kidney-enriched zinc-finger transcription factor, exacerbates kidney fibrosis in murine models. Here, we tested whether Klf15 mRNA and protein expression is reduced in late stages of fibrosis in mice that underwent unilateral ureteric obstruction, a model of progressive renal fibrosis Knockdown of Klf15 in Foxd1-expressing cells (Foxd1-Cre Klf15fl/fl) increased extracellular matrix deposition and myofibroblast proliferation as compared to wildtype (Foxd1-Cre Klf15+/+) mice after three and seven days of ureteral obstruction. This was validated in mice receiving angiotensin II treatment for six weeks. In both these murine models, the increase in renal fibrosis was found in Foxd1-Cre Klf15fl/fl mice and accompanied by activation of Wnt/β-catenin signaling. Furthermore, knockdown of Klf15 in cultured mouse embryonic fibroblasts activated canonical Wnt/β-catenin signaling, increased profibrotic transcripts, and increased proliferation after treatment with a Wnt1 ligand. Conversely, overexpression of KLF15 inhibited phospho-β-catenin (Ser552) expression in Wnt1-treated cells. Thus, KLF15 has a critical role in attenuating kidney fibrosis by inhibiting the canonical Wnt/β-catenin pathway.
Podocyte loss triggering aberrant activation and proliferation of parietal epithelial cells (PECs) is a central pathogenic event in proliferative glomerulopathies. Podocyte-specific Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor, is essential for maintaining podocyte homeostasis and PEC quiescence. Using mice with podocyte-specific knockdown of Klf4, we conducted glomerular RNA-sequencing, tandem mass spectrometry, and single-nucleus RNA-sequencing to identify cell-specific transcriptional changes that trigger PEC activation due to podocyte loss. Integration with in silico chromatin immunoprecipitation identified key ligand-receptor interactions, such as fibronectin 1 (FN1)-V6, between podocytes and PECs dependent on KLF4 and downstream signal transducer and activator of transcription 3 (STAT3) signaling. Knockdown of Itgb6 in PECs attenuated PEC activation. Additionally, podocyte-specific induction of human KLF4 or pharmacological inhibition of downstream STAT3 activation reduced FN1 and integrin 6 (ITGB6) expression and mitigated podocyte loss and PEC activation in mice. Targeting podocyte-PEC crosstalk might be a critical therapeutic strategy in proliferative glomerulopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.