The Hippo pathway plays a stage-specific role in regeneration and fibrogenesis after ischaemia/reperfusion-induced acute kidney injury. The proper modulation of this pathway might be the key point of transition from acute kidney injury to chronic kidney disease.
Background/Aims: Renal interstitial fibrosis is a hallmark of progressive chronic kidney disease (CKD). Previous studies reported that kruppel-like factor 15 (KLF15) is an important regulator of cardiac fibrosis and could reduce the expression of extracellular matrix in mesangial cells. However, the role of this transcription factor in renal interstitial fibrosis has not been reported. Methods: In this study, we examined KLF15 expression in the remnant kidney of 5/6 nephrectomized rats 12 or 24 weeks after operation. In vitro we examined the effect of altered KLF15 expression on the production of extracellular matrix and the pro-fibrotic factor CTGF in rat renal fibroblasts (NRK-49F), and further explored the related mechanisms. Results: The level of KLF15 was drastically decreased in the renal interstitium of 5/6 nephrectomized rats with progressive interstitial fibrosis, especially at 24 weeks. Our in vitro evidence showed that overexpression of KLF15 repressed basal and transforming growth factor-β1 (TGF-β1)-induced extracellular matrix and CTGF in NRK-49F cells. In addition, TGF-β1-mediated activation of extracellular-regulated kinase (ERK) / mitogen-activated protein kinase (MAPK) and Jun N-terminal kinase (JNK) /MAPK downregulated KLF15 expression and increased the level of extracellular matrix and CTGF, and all these effects were completely abolished by ERK1/2 inhibitor and JNK inhibitor in NRK-49F cells. Conclusions: Our findings implicate that KLF15 plays an important role and may prove to be an antifibrotic factor in renal interstitial fibrosis through regulation of ERK/MAPK and JNK/MAPK signaling pathways.
Inducing podocyte-specific attenuates kidney injury by directly and indirectly upregulating genes critical for podocyte differentiation, suggesting that induction might be a potential strategy for treating proteinuric kidney disease.
Large epidemiological studies clearly demonstrate that multiple episodes of acute kidney injury contribute to the development and progression of kidney fibrosis. Although our understanding of kidney fibrosis has improved in the past two decades, we have limited therapeutic strategies to halt its progression. Myofibroblast differentiation and proliferation remain critical to progression of kidney fibrosis. Although canonical Wnt signaling can trigger activation of myofibroblasts in the kidney, mediators of Wnt inhibition in the resident progenitor cells are unclear. Recent studies demonstrate that the loss of a Kruppel-Like Factor 15 (KLF15), a kidney-enriched zinc-finger transcription factor, exacerbates kidney fibrosis in murine models. Here, we tested whether Klf15 mRNA and protein expression is reduced in late stages of fibrosis in mice that underwent unilateral ureteric obstruction, a model of progressive renal fibrosis Knockdown of Klf15 in Foxd1-expressing cells (Foxd1-Cre Klf15fl/fl) increased extracellular matrix deposition and myofibroblast proliferation as compared to wildtype (Foxd1-Cre Klf15+/+) mice after three and seven days of ureteral obstruction. This was validated in mice receiving angiotensin II treatment for six weeks. In both these murine models, the increase in renal fibrosis was found in Foxd1-Cre Klf15fl/fl mice and accompanied by activation of Wnt/β-catenin signaling. Furthermore, knockdown of Klf15 in cultured mouse embryonic fibroblasts activated canonical Wnt/β-catenin signaling, increased profibrotic transcripts, and increased proliferation after treatment with a Wnt1 ligand. Conversely, overexpression of KLF15 inhibited phospho-β-catenin (Ser552) expression in Wnt1-treated cells. Thus, KLF15 has a critical role in attenuating kidney fibrosis by inhibiting the canonical Wnt/β-catenin pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.