Promoter-proximal RNA polymerase II (Pol II) pausing is implicated in the regulation of gene transcription. However, the mechanisms of pausing including its dynamics during transcriptional responses remain to be fully understood. We performed global analysis of short capped RNAs and Pol II Chromatin Immunoprecipitation sequencing in MCF-7 breast cancer cells to map Pol II pausing across the genome, and used permanganate footprinting to specifically follow pausing during transcriptional activation of several genes involved in the epithelial to mesenchymal transition (EMT). We find that the gene for EMT master regulator Snail (SNAI1), but not Slug (SNAI2), shows evidence of Pol II pausing before activation. Transcriptional activation of the paused SNAI1 gene is accompanied by a further increase in Pol II pausing signal, whereas activation of non-paused SNAI2 gene results in the acquisition of a typical pausing signature. The increase in pausing signal reflects increased transcription initiation without changes in Pol II pausing. Activation of the heat shock HSP70 gene involves pausing release that speeds up Pol II turnover, but does not change pausing location. We suggest that Pol II pausing is retained during transcriptional activation and can further undergo regulated release in a signal-specific manner.
Colorectal cancer (CRC) is the third most diagnosed cancer in the western world, affecting 1 out of approximately 22 people in their lifetime. Several epidemiological studies suggest a positive association between high plasma cholesterol levels and colorectal cancer. However, the molecular mechanisms by which cholesterol may alter the risk of colorectal cancer (CRC) are ill-defined as the cholesterol lowering drugs statins do not appear to decrease a patient's risk of developing colorectal cancer. Cholesterol is metabolized to active derivatives including cholesterol oxidization products (COP), known as oxysterols, which have been shown to alter cellular proliferation. These metabolites and not cholesterol per se, may therefore affect the risk of developing colorectal cancer. The cholesterol metabolite or the oxysterol 27-hydroxycholesterol (27-OHC) is the most abundant oxysterol in the plasma and has been shown to be involved in the pathogenesis of several cancers including breast and prostate cancer. However, the role of 27-OHC in colorectal cancer has not been investigated. We treated Caco2 and SW620, two well characterized colon cancer cells with low, physiological and high concentrations of 27-OHC, and found that 27-OHC reduces cellular proliferation in these cells. We also found that the effects of 27-OHC on cell proliferation are not due to cellular cytotoxicity or apoptotic cellular death. Additionally, 27-OHC-induced reduction in cell proliferation is independent of actions on its target nuclear receptors, liver-X-receptors (LXR) and estrogen receptors (ER) activation. Instead, our study demonstrates that 27-OHC significantly decreases AKT activation, a major protein kinase involved in the pathogenesis of cancer as it regulates cell cycle progression, protein synthesis, and cellular survival. Our data shows that treatment with 27-OHC substantially decreases the activation of AKT by reducing levels of its active form, p-AKT, in Caco2 cells but not SW620 cells. All-together, our results show for the first time that the cholesterol metabolite 27-OHC reduces cell proliferation in colorectal cancer cells.
Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.
Reliable breakpoint cluster region (BCR)--Abelson (ABL) 1 measurement is essential for optimal management of chronic myelogenous leukemia. There is a need to optimize quality control, sensitivity, and reliability of methods used to measure a major molecular response and/or treatment failure. The effects of room temperature storage time, different primers, and RNA input in the reverse transcription (RT) reaction on BCR-ABL1 and β-glucuronidase (GUSB) cDNA yield were assessed in whole blood samples mixed with K562 cells. BCR-ABL1 was measured relative to GUSB to control for sample loading, and each gene was measured relative to known numbers of respective internal standard molecules to control for variation in quality and quantity of reagents, thermal cycler conditions, and presence of PCR inhibitors. Clinical sample and reference material measurements with this test were concordant with results reported by other laboratories. BCR-ABL1 per 10(3) GUSB values were significantly reduced (P = 0.004) after 48-hour storage. Gene-specific primers yielded more BCR-ABL1 cDNA than random hexamers at each RNA input. In addition, increasing RNA inhibited the RT reaction with random hexamers but not with gene-specific primers. Consequently, the yield of BCR-ABL1 was higher with gene-specific RT primers at all RNA inputs tested, increasing to as much as 158-fold. We conclude that optimal measurement of BCR-ABL1 per 10(3) GUSB in whole blood is obtained when gene-specific primers are used in RT and samples are analyzed within 24 hours after blood collection.
In the United States, Colorectal Cancer is the third most diagnosed cancer, affecting 1 out of approximately 22 people in their lifetime. A major molecule involved in cancer progression is the AKT signaling pathway, which regulates cell cycle progression, protein synthesis, and cellular survival. Several cholesterol metabolites, including 27‐hydroxycholesterol (27‐OHC) have been shown to be involved in breast and prostate cancers. However, the role of 27‐OHC in colon cancer has yet to be determined. The goal of our study is to investigate the potential role of 27‐OHC in colon cancer progression. To study the effects of 27‐OHC, SW620 and Caco2 colon cancer cells were treated with 0.5 μM to 300 μM of 27‐OHC for 24 hours and MTT proliferation assay, LDH cytotoxicity, TUNEL assay, and western blotting was performed. Additionally, cellular migration was measured with a scratch assay. We found a significant decrease in cellular proliferation at supraphysiological concentrations of 27‐OHC (10 μM to 300 μM) with no significant cellular cytotoxicity or apoptotic cell death. Western blotting showed a significant decrease in p‐AKT expression with 10 μM of 27‐OHC in Caco2 cells. In both cell lines there was a significant increase in cellular migration. This data demonstrates that 27‐OHC increases cellular migration through a loss of cellular proliferation. The decrease in cellular proliferation is dependent on p‐AKT in Caco2 cells and an AKT‐independent pathway in SW620 cells, suggesting that 27‐OHC has differential effects on different colon cancer cells.Support or Funding InformationR01AG0145264 awarded to OGThis abstract is from the Experimental Biology 2018 Meeting. There is no full text article associated with this abstract published in The FASEB Journal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.