Research on the human microbiome has mainly been restricted to the identification of most abundant microbiota associated with health or disease. Their abundance may reflect their capacity to exploit their niche, however, metabolic functions exerted by low-abundant microrganisms can impact the dysbiotic signature of local microbial habitats. This scoping review aims to map the literature regarding the management of low-abundant microorganisms in studies investigating human microbiome samples. A systematic literature search was performed in 5 electronic databases, as well as grey literature. We selected clinical microbiome studies targeting human participants of any age, from any body site. We also included studies with secondary data which originated from human biofilm samples. All of the papers used next-generation sequencing (NGS) techniques in their methodology. A total of 826 manuscripts were retrieved, of which 42 were included in this review and 22 reported low-abundant bacteria (LB) in samples taken from 7 body sites (breast, gut, oral cavity, skin, stomach, upper respiratory tract (URT), and vagina). Four studies reported microbes at abundance levels between 5 and 20%, 8 studies reported between 1 and 5%, and 18 studies reported below 1%. Fifteen papers mentioned fungi and/or archaea, and from those only 4 (fungi) and 2 (archaea) produced data regarding the abundance of these domains. While most studies were directed towards describing the taxonomy, diversity and abundance of the highly abundant species, low-abundant species have largely been overlooked. Indeed, most studies select a cut-off value at <1% for low-abundant organisms to be excluded in their analyses. This practice may compromise the true diversity and influence of all members of the human microbiota. Despite their low abundance and signature in biofilms, they may generate important markers contributing to dysbiosis, in a sort of ‘butterfly effect’. A detailed snapshot of the physiological, biological mechanisms at play, including virulence determinants in the context of a dysbiotic community, may help better understand the health-disease transition.
Introduction This scoping review aimed to determine the frequency of different teaching methodologies, tools and platforms applied in dental education during the COVID‐19 pandemic. Materials and Methods The search strategy was performed in six databases and grey literature. A total of 28 questionnaire‐based studies were included, without language or time restriction, from 20 different countries. Results Six thousand five hundred sixty‐five participants were assessed: 84% undergraduates, 9% of faculty members, 5% of postgraduate students/residents/trainees and 2% of dental schools/residency programs. The pooled eligible data for teaching methodologies were 62% of a combination of different methods (95% CI, 35.5% to 82.3%), 23% a combination of synchronous and asynchronous formats (95% CI, 8.2% to 50.2%) and 15% for only synchronous lectures (95% CI, 4.3% to 42.2%). The reported tools were laptops (40%), smartphones (40%), tablets (40%), desktops (20%), Blackboard (20%), Respondus Lockdown Browser (20%), eProctor (20%) and PowerPoint (20%). The most used platforms were Zoom (70.6%), Microsoft Teams (23.5%) and Cisco Webex (23.5%). A better time management (17.9%; 95% CI, 7.9% to 35.6%) and the possibility of revision with additional notes (14.3%; 95% CI, 5.7% to 31.5%) was the greatest advantages related to dental e‐learning, while the increased levels of anxiety/stress/burnout/exhaustion (35.7%; 95% CI, 21% to 54.2%) and internet connection problems (35.7%; 95% CI, 21% to 54.2%) was the most cited disadvantages. Conclusion This scoping review showed promising blended teaching methodologies, tools and platforms in the dental education profile. The evidence suggests that e‐learning technologies can widely contribute to dental education during the COVID‐19 pandemic. Therefore, this study makes a major contribution to research by assessing the impact of COVID restrictions on dental education and further studies are needed to identify how restrictions in dental practice will affect future professionals.
The Archaea domain was recognized as a separate phylogenetic lineage in the tree of life nearly 3 decades ago. It is now known as part of the human microbiome; however, given that its roles in oral sites are still poorly understood, this review aimed to establish the current level of evidence regarding archaea in the oral cavity to guide future research, providing insights on the present knowledge about the human oral archaeome. A scoping review was conducted with the PRISMA Extension for Scoping Reviews checklist. Five electronic databases were searched, as well as gray literature. Two independent reviewers performed the selection and characterization of the studies. Clinical studies were included when the target population consisted of humans of any age who were donors of samples from the oral cavity. A qualitative analysis was performed, based on the type of oral site and by considering the methods employed for archaeal identification and taxonomy, including the DNA extraction protocols, primers, and probes used. Fifty articles were included in the final scoping review, published from 1987 to 2019. Most studies sampled periodontal sites. Methanogens were the most abundant archaea in those sites, and their presence could be associated with other periodontal pathogens. No consistent relationship with different disease conditions was observed in studies that evaluated the microbiota surviving in endodontic sites. Few articles analyzed the presence of archaea in dental caries, saliva, or tongue microbiota, as well as in archaeologic samples, also showing a relationship with healthy microbiota. Archaea have been detected in different oral niches of individuals from diverse geographic locations and clinical conditions, suggesting potential roles in oral diseases. Methodological limitations may hamper our current knowledge about archaeal diversity and prevalence in oral samples, and future research with diversified methodological approaches may lead to a better comprehension of the human oral archaeome.
It could conceivably be hypothesized that a link exists between an altered microbiota due to local hyperglycemia and the increased risk of caries in diabetes mellitus (DM). This systematic review aimed to perform a cross-study comparison into the salivary microbiota of adults with type 2 diabetes mellitus (T2D) compared to adults without T2D, particularly focusing on the abundance of acid-associated bacteria. This report follows PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Studies using next-generation sequencing and other molecular techniques are included. The methodological quality of individual studies was assessed using appropriate Joanna Briggs Institute tools. The certainty of the evidence considering the effect direction was evaluated using the GRADE approach. From 2060 titles retrieved, 12 were included in the data synthesis, totalling 873 individuals with T2D and controls evaluated across the literature. Weighted averages of blood glucose levels (HbA1c—fasting blood glucose) were 8.21%—172.14 mg/dL and 5.12%—84.53 mg/dL for T2D and controls, respectively. In most studies, the relative abundance of acidogenic and aciduric bacteria was higher in diabetics when compared to their normoglycaemic controls. Whilst the evidence certainty was very low, there was a consistent Proteobacteria depletion and Firmicutes enrichment in T2D. As for the acid-associated genera, there was consistent enrichment of Lactobacillus and Veillonela for T2D. Tannerella/T. forsythia was enriched in T2D saliva, but the certainty is low. Further well-designed cohorts are needed to clarify the distribution of acid-associated microorganisms in the saliva of adults with T2D and how this can be clinically manifested (PROSPERO = CRD42021264350).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.