Sclerosteosis is an autosomal recessive sclerosing bone dysplasia characterized by progressive skeletal overgrowth. The majority of affected individuals have been reported in the Afrikaner population of South Africa, where a high incidence of the disorder occurs as a result of a founder effect. Homozygosity mapping in Afrikaner families along with analysis of historical recombinants localized sclerosteosis to an interval of approximately 2 cM between the loci D17S1787 and D17S930 on chromosome 17q12-q21. Here we report two independent mutations in a novel gene, termed "SOST." Affected Afrikaners carry a nonsense mutation near the amino terminus of the encoded protein, whereas an unrelated affected person of Senegalese origin carries a splicing mutation within the single intron of the gene. The SOST gene encodes a protein that shares similarity with a class of cystine knot-containing factors including dan, cerberus, gremlin, prdc, and caronte. The specific and progressive effect on bone formation observed in individuals affected with sclerosteosis, along with the data presented in this study, together suggest that the SOST gene encodes an important new regulator of bone homeostasis.
Van Buchem disease is an autosomal recessive sclerosing bone dysplasia characterized by skeletal hyperostosis, overgrowth of the mandible, and a liability to entrapment of the seventh and eighth cranial nerves. The genetic determinant maps to chromosome 17q12-q21. We refined the critical interval to the < 1-Mb region between D17S2250 and D17S2253 in 15 affected individuals, all of whom shared a common disease haplotype. Furthermore, we report here the identification of a 52-kb deletion located within the interval and encompassing D17S1789 that is 100% concordant with the disorder. Although the deletion itself does not appear to disrupt the coding region of any known or novel gene(s), the closest flanking genes are MEOX1 on the proximal side, and SOST on the distal side of the deletion. MEOX1 is known to be important for the development of the axial skeleton, whereas the SOST gene is the determinant of sclerosteosis, a disorder that shares many features with van Buchem disease, thus raising the possibility that van Buchem disease results from dysregulation of the expression of one or both of these genes.
Sclerosteosis (SCL) is a severe, progressive, autosomal-recessive craniotubular hyperostosis (MIM 269500). The determinant gene (SOST) has been isolated, and genotype-phenotype correlations, as well as the elucidation of pathogenetic mechanisms, are dependent upon the documentation of the natural history of the condition. For this reason, the course and complications in 63 affected individuals in South Africa, seen over a 38-year period, have been analyzed. Thirty-four of these persons died during the course of the survey, 24 from complications related to elevation of intracranial pressure as a result of calvarial overgrowth. The mean age of death in this group of individuals was 33 years, with an even gender distribution. Facial palsy and deafness, as a result of cranial nerve entrapment, developed in childhood in 52 (82%) affected persons. Mandibular overgrowth was present in 46 (73%) adults and syndactyly in 48 (76%). In South Africa in 2002, 29 affected persons were alive, 10 being < or =20 years of age. It is evident that sclerosteosis is a severe disorder which places a considerable burden upon affected individuals and their families.
Astrocytes are intimately involved in the mechanisms of neural injury and repair. They participate in a variety of homeostatic functions and elicit repair responses as balance mechanisms. Currently, there is a growing appreciation of a more active role of astrocytes in neuronal signaling and function. One key homeostatic mechanism of astrocytes in tissue repair is maintained through their production of tissue inhibitors of metalloproteinases (TIMPs). The family of TIMPs (1-4) plays a central regulatory role as inhibitors of matrix metalloproteinases (MMPs), enzymes involved in extracellular matrix maintenance and remodeling. Recently, TIMP-1, the inducible form, has been identified as a multifunctional molecule with divergent functions. It participates in wound healing and regeneration, cell morphology and survival, tumor metastasis, angiogenesis, and inflammatory responses. An imbalance of MMP/TIMP regulation has been implicated in several inflammatory diseases of the central nervous system (CNS). Here we review the conundrums of TIMP-1 regulation in CNS pathophysiology. We propose that astrocyte-TIMP-1 may play an important role in CNS homeostasis and disease. Astrocyte TIMP-1 expression is differentially regulated in inflammatory neurodegenerative diseases and may have significant therapeutic relevance.
Craniometaphyseal dysplasia (CMD) is a rare skeletal disorder characterized by progressive thickening and increased mineral density of craniofacial bones and abnormally developed metaphyses in long bones. Linkage studies mapped the locus for the autosomal dominant form of CMD to an approximately 5-cM interval on chromosome 5p, which is defined by recombinations between loci D5S810 and D5S1954. Mutational analysis of positional candidate genes was performed, and we describe herein three different mutations, in five different families and in isolated cases, in ANK, a multipass transmembrane protein involved in the transport of intracellular pyrophosphate into extracellular matrix. The mutations are two in-frame deletions and one in-frame insertion caused by a splicing defect. All mutations cluster within seven amino acids in one of the six possible cytosolic domains of ANK. These results suggest that the mutated protein has a dominant negative effect on the function of ANK, since reduced levels of pyrophosphate in bone matrix are known to increase mineralization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.