IPEX is a fatal disorder characterized by immune dysregulation, polyendocrinopathy, enteropathy and X-linked inheritance (MIM 304930). We present genetic evidence that different mutations of the human gene FOXP3, the ortholog of the gene mutated in scurfy mice (Foxp3), causes IPEX syndrome. Recent linkage analysis studies mapped the gene mutated in IPEX to an interval of 17-20-cM at Xp11. 23-Xq13.3.
To determine whether human X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome (IPEX; MIM 304930) is the genetic equivalent of the scurfy (sf) mouse, we sequenced the human ortholog (FOXP3) of the gene mutated in scurfy mice (Foxp3), in IPEX patients. We found four non-polymorphic mutations. Each mutation affects the forkhead/winged-helix domain of the scurfin protein, indicating that the mutations may disrupt critical DNA interactions.
There is an unmet medical need for anabolic treatments to restore lost bone. Human genetic bone disorders provide insight into bone regulatory processes. Sclerosteosis is a disease typi®ed by high bone mass due to the loss of SOST expression. Sclerostin, the SOST gene protein product, competed with the type I and type II bone morphogenetic protein (BMP) receptors for binding to BMPs, decreased BMP signaling and suppressed mineralization of osteoblastic cells. SOST expression was detected in cultured osteoblasts and in mineralizing areas of the skeleton, but not in osteoclasts. Strong expression in osteocytes suggested that sclerostin expressed by these central regulatory cells mediates bone homeostasis. Transgenic mice overexpressing SOST exhibited low bone mass and decreased bone strength as the result of a signi®cant reduction in osteoblast activity and subsequently, bone formation. Modulation of this osteocyte-derived negative signal is therapeutically relevant for disorders associated with bone loss.
Sclerosteosis is an autosomal recessive sclerosing bone dysplasia characterized by progressive skeletal overgrowth. The majority of affected individuals have been reported in the Afrikaner population of South Africa, where a high incidence of the disorder occurs as a result of a founder effect. Homozygosity mapping in Afrikaner families along with analysis of historical recombinants localized sclerosteosis to an interval of approximately 2 cM between the loci D17S1787 and D17S930 on chromosome 17q12-q21. Here we report two independent mutations in a novel gene, termed "SOST." Affected Afrikaners carry a nonsense mutation near the amino terminus of the encoded protein, whereas an unrelated affected person of Senegalese origin carries a splicing mutation within the single intron of the gene. The SOST gene encodes a protein that shares similarity with a class of cystine knot-containing factors including dan, cerberus, gremlin, prdc, and caronte. The specific and progressive effect on bone formation observed in individuals affected with sclerosteosis, along with the data presented in this study, together suggest that the SOST gene encodes an important new regulator of bone homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.