NRF2 (Nuclear factor Erythroid 2-related Factor 2) signaling is impaired in Friedreich’s Ataxia (FRDA), an autosomal recessive disease characterized by progressive nervous system damage and degeneration of nerve fibers in the spinal cord and peripheral nerves. The loss of frataxin in patients results in iron sulfur cluster deficiency and iron accumulation in the mitochondria, making FRDA a fatal and debilitating condition. There are no currently approved therapies for the treatment of FRDA and molecules able to activate NRF2 have the potential to induce clinical benefits in patients. In this study, we compared the efficacy of six redox-active drugs, some already adopted in clinical trials, targeting NRF2 activation and frataxin expression in fibroblasts obtained from skin biopsies of FRDA patients. All of these drugs consistently increased NRF2 expression, but differential profiles of NRF2 downstream genes were activated. The Sulforaphane and N-acetylcysteine were particularly effective on genes involved in preventing inflammation and maintaining glutathione homeostasis, the dimethyl fumarate, omaxevolone, and EPI-743 in counteracting toxic products accumulation, the idebenone in mitochondrial protection. This study may contribute to develop synergic therapies, based on a combination of treatment molecules.
Background Preclinical studies underlined the relevance of Nuclear factor erythroid 2‐related factor 2 (Nrf2) transcription factor pathway in the pathogenesis of Parkinson's disease (PD). Objective The objective of this study was to explore Nrf2 pathway in vivo in PD, looking for novel disease biomarkers and therapeutic targets. Methods The levels of Nrf2, the downstream effectors (NAD(P)H dehydrogenase [quinone] 1 (Nqo1) enzyme, glutathione metabolism enzymes Glutamate–cysteine ligase (GCL) and Glutathione Reductase (GR)), the upstream activators (redox state and mitochondrial dysfunction), and α‐synuclein oligomers were assessed in the blood leukocytes of PD patients comparatively to controls. Biochemical data were correlated to clinical parameters. Results In PD, Nrf2 was highly transcribed and expressed as well as its target effectors. The mitochondrial complex I activity was reduced and the oxidized form of glutathione prevailed, disclosing the presence of pathway's activators. Also, α‐synuclein oligomers levels were increased. Nrf2 transcript and oligomers levels correlated with PD duration. Conclusions Blood leukocytes mirror pathogenic mechanisms of PD, showing the systemic activation of the Nrf2 pathway and its link with synucleinopathy and clinical events. © 2019 International Parkinson and Movement Disorder Society
Frataxin deficiency is the pathogenic cause of Friedreich’s Ataxia, an autosomal recessive disease characterized by the increase of oxidative stress and production of free radicals in the cell. Although the onset of the pathology occurs in the second decade of life, cognitive differences and defects in brain structure and functional activation are observed in patients, suggesting developmental defects to take place during fetal neurogenesis. Here, we describe impairments in proliferation, stemness potential and differentiation in neural stem cells (NSCs) isolated from the embryonic cortex of the Frataxin Knockin/Knockout mouse, a disease animal model whose slow-evolving phenotype makes it suitable to study pre-symptomatic defects that may manifest before the clinical onset. We demonstrate that enhancing the expression and activity of the antioxidant response master regulator Nrf2 ameliorates the phenotypic defects observed in NSCs, re-establishing a proper differentiation program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.