We collated contact tracing data from COVID-19 clusters in Singapore and Tianjin, China and estimated the extent of pre-symptomatic transmission by estimating incubation periods and serial intervals. The mean incubation periods accounting for intermediate cases were 4.91 days (95%CI 4.35, 5.69) and 7.54 (95%CI 6.76, 8.56) days for Singapore and Tianjin, respectively. The mean serial interval was 4.17 (95%CI 2.44, 5.89) and 4.31 (95%CI 2.91, 5.72) days (Singapore, Tianjin). The serial intervals are shorter than incubation periods, suggesting that pre-symptomatic transmission may occur in a large proportion of transmission events (0.4-0.5 in Singapore and 0.6-0.8 in Tianjin, in our analysis with intermediate cases, and more without intermediates). Given the evidence for pre-symptomatic transmission it is vital that even individuals who appear healthy abide by public health measures to control COVID-19.
Background: As the COVID-19 epidemic is spreading, incoming data allows us to quantify values of key variables that determine the transmission and the effort required to control the epidemic. We determine the incubation period and serial interval distribution for transmission clusters in Singapore and in Tianjin. We infer the basic reproduction number and identify the extent of pre-symptomatic transmission.Methods: We collected outbreak information from Singapore and Tianjin, China, reported from Jan.19-Feb.26 and Jan.21-Feb.27, respectively. We estimated incubation periods and serial intervals in both populations.Results: The mean incubation period was 7.1 (6.13, 8.25) days for Singapore and 9 (7.92, 10.2) days for Tianjin. Both datasets had shorter incubation periods for earlier-occurring cases. The mean serial interval was 4.56 (2.69, 6.42) days for Singapore and 4.22 (3.43, 5.01) for Tianjin. We inferred that early in the outbreaks, infection was transmitted on average 2.55 and 2.89 days before symptom onset (Singapore, Tianjin). The estimated basic reproduction number for Singapore was 1.97 (1.45, 2.48) secondary cases per infective; for Tianjin it was 1.87 (1.65, 2.09) secondary cases per infective.Conclusions: Estimated serial intervals are shorter than incubation periods in both Singapore and Tianjin, suggesting that pre-symptomatic transmission is occurring. Shorter serial intervals lead to lower estimates of R0, which suggest that half of all secondary infections should be prevented to control spread.
Extensive physical distancing measures are currently the primary intervention against coronavirus disease (COVID-) worldwide. It is therefore urgent to estimate the impact such measures are having. We introduce a Bayesian epidemiological model in which a proportion of individuals are willing and able to participate in distancing measures, with the timing of these measures informed by survey data on a itudes to distancing and COVID-. We t our model to reported COVID-cases in British Columbia, Canada, using an observation model that accounts for both underestimation and the delay between symptom onset and reporting. We estimate the impact that physical distancing (also known as social distancing) has had on the contact rate and examine the projected impact of relaxing distancing measures. We nd that distancing has had a strong impact, consistent with declines in reported cases and in hospitalization and intensive care unit numbers. We estimate that approximately . ( . -. % CI) of contacts have been removed for individuals in British Columbia practising physical distancing and that this fraction is above the threshold of . at which prevalence is expected to grow. However, relaxing distancing measures beyond this threshold re-starts rapid exponential growth. Because the extent of underestimation is unknown, the data are consistent with a wide range in the prevalence of COVID-in the population; changes to testing criteria over time introduce additional uncertainty. Our projections indicate that intermi ent distancing measures-if su ciently strong and robustly followedcould control COVID-transmission, but that if distancing measures are relaxed too much, the epidemic curve would grow to high prevalence.
Extensive non-pharmaceutical and physical distancing measures are currently the primary interventions against coronavirus disease 2019 (COVID-19) worldwide. It is therefore urgent to estimate the impact such measures are having. We introduce a Bayesian epidemiological model in which a proportion of individuals are willing and able to participate in distancing, with the timing of distancing measures informed by survey data on attitudes to distancing and COVID-19. We fit our model to reported COVID-19 cases in British Columbia (BC), Canada, and five other jurisdictions, using an observation model that accounts for both underestimation and the delay between symptom onset and reporting. We estimated the impact that physical distancing (social distancing) has had on the contact rate and examined the projected impact of relaxing distancing measures. We found that, as of April 11 2020, distancing had a strong impact in BC, consistent with declines in reported cases and in hospitalization and intensive care unit numbers; individuals practising physical distancing experienced approximately 0.22 (0.11–0.34 90% CI [credible interval]) of their normal contact rate. The threshold above which prevalence was expected to grow was 0.55. We define the “contact ratio” to be the ratio of the estimated contact rate to the threshold rate at which cases are expected to grow; we estimated this contact ratio to be 0.40 (0.19–0.60) in BC. We developed an R package ‘covidseir’ to make our model available, and used it to quantify the impact of distancing in five additional jurisdictions. As of May 7, 2020, we estimated that New Zealand was well below its threshold value (contact ratio of 0.22 [0.11–0.34]), New York (0.60 [0.43–0.74]), Washington (0.84 [0.79–0.90]) and Florida (0.86 [0.76–0.96]) were progressively closer to theirs yet still below, but California (1.15 [1.07–1.23]) was above its threshold overall, with cases still rising. Accordingly, we found that BC, New Zealand, and New York may have had more room to relax distancing measures than the other jurisdictions, though this would need to be done cautiously and with total case volumes in mind. Our projections indicate that intermittent distancing measures—if sufficiently strong and robustly followed—could control COVID-19 transmission. This approach provides a useful tool for jurisdictions to monitor and assess current levels of distancing relative to their threshold, which will continue to be essential through subsequent waves of this pandemic.
Outbreaks of tuberculosis (TB) – such as the large isoniazid-resistant outbreak centred on London, UK, which originated in 1995 – provide excellent opportunities to model transmission of this devastating disease. Transmission chains for TB are notoriously difficult to ascertain, but mathematical modelling approaches, combined with whole-genome sequencing data, have strong potential to contribute to transmission analyses. Using such data, we aimed to reconstruct transmission histories for the outbreak using a Bayesian approach, and to use machine-learning techniques with patient-level data to identify the key covariates associated with transmission. By using our transmission reconstruction method that accounts for phylogenetic uncertainty, we are able to identify 21 transmission events with reasonable confidence, 9 of which have zero SNP distance, and a maximum distance of 3. Patient age, alcohol abuse and history of homelessness were found to be the most important predictors of being credible TB transmitters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.