Prostate cancer is one of the most significant health concerns for men worldwide. Numerous researchers carrying out molecular diagnostics have indicated that genetic interactions with biological and behavioral factors play an important role in the overall risk and prognosis of this disease. Single nucleotide polymorphisms (SNPs) are increasingly becoming strong biomarker candidates to identify susceptibility to prostate cancer. We carried out a gene × environment interaction analysis linked to aggressive and non-aggressive prostate cancer (PCa) with a number of SNPs. By using this method, we identified the susceptible alleles in a New Zealand population, and examined the interaction with environmental factors. We have identified a number of SNPs that have risk associations both with and without environmental interaction. The results indicate that certain SNPs are associated with disease vulnerability based on behavioral factors. The list of genes with SNPs identified as being associated with the risk of PCa in a New Zealand population is provided in the graphical abstract.
Background The incidence of multidrug-resistant tuberculosis (MDR-TB) remains critically high in countries of the former Soviet Union, where >20% of new cases and >50% of previously treated cases have resistance to rifampin and isoniazid. Transmission of resistant strains, as opposed to resistance selected through inadequate treatment of drug-susceptible tuberculosis (TB), is the main driver of incident MDR-TB in these countries. Methods and findings We conducted a prospective, genomic analysis of all culture-positive TB cases diagnosed in 2018 and 2019 in the Republic of Moldova. We used phylogenetic methods to identify putative transmission clusters; spatial and demographic data were analyzed to further describe local transmission of Mycobacterium tuberculosis. Of 2,236 participants, 779 (36%) had MDR-TB, of whom 386 (50%) had never been treated previously for TB. Moreover, 92% of multidrug-resistant (MDR) M. tuberculosis strains belonged to putative transmission clusters. Phylogenetic reconstruction identified 3 large clades that were comprised nearly uniformly of MDR-TB: 2 of these clades were of Beijing lineage, and 1 of Ural lineage, and each had additional distinct clade-specific second-line drug resistance mutations and geographic distributions. Spatial and temporal proximity between pairs of cases within a cluster was associated with greater genomic similarity. Our study lasted for only 2 years, a relatively short duration compared with the natural history of TB, and, thus, the ability to infer the full extent of transmission is limited. Conclusions The MDR-TB epidemic in Moldova is associated with the local transmission of multiple M. tuberculosis strains, including distinct clades of highly drug-resistant M. tuberculosis with varying geographic distributions and drug resistance profiles. This study demonstrates the role of comprehensive genomic surveillance for understanding the transmission of M. tuberculosis and highlights the urgency of interventions to interrupt transmission of highly drug-resistant M. tuberculosis.
Outbreaks of tuberculosis (TB) – such as the large isoniazid-resistant outbreak centred on London, UK, which originated in 1995 – provide excellent opportunities to model transmission of this devastating disease. Transmission chains for TB are notoriously difficult to ascertain, but mathematical modelling approaches, combined with whole-genome sequencing data, have strong potential to contribute to transmission analyses. Using such data, we aimed to reconstruct transmission histories for the outbreak using a Bayesian approach, and to use machine-learning techniques with patient-level data to identify the key covariates associated with transmission. By using our transmission reconstruction method that accounts for phylogenetic uncertainty, we are able to identify 21 transmission events with reasonable confidence, 9 of which have zero SNP distance, and a maximum distance of 3. Patient age, alcohol abuse and history of homelessness were found to be the most important predictors of being credible TB transmitters.
Background The incidence of multidrug-resistant tuberculosis (MDR-TB) remains critically high in countries of the former Soviet Union, where >20% of new cases and >50% of previously-treated cases have resistance to rifampin and isoniazid. Transmission of resistant strains, as opposed to resistance selected through inadequate treatment of drug-susceptible TB, is the main driver of incident MDR-TB in these countries. Methods We conducted a prospective, genomic analysis of all culture-positive TB cases diagnosed in 2018 and 2019 in the Republic of Moldova. We used phylogenetic methods to identify putative transmission clusters; spatial and demographic data were analyzed to further describe local transmission of M. tuberculosis. Results Of 2236 participants, 779 (36%) had MDR-TB, of whom 386 (50%) had never been treated previously for TB. 92% of MDR M. tuberculosis strains belonged to putative transmission clusters. Phylogenetic reconstruction identified three large clades that were comprised nearly uniformly of MDR-TB; two of these clades were of Beijing lineage and one of Ural lineage, and each had additional distinct clade-specific second-line drug resistance mutations and geographic distributions. Spatial and temporal proximity between pairs of cases within a cluster was associated with greater genomic similarity. Conclusions The MDR-TB epidemic in Moldova is the result of local transmission of multiple M. tuberculosis strains, including distinct clades of highly drug-resistant M. tuberculosis with varying geographic distributions and drug resistance profiles. This study demonstrates the role of comprehensive genomic surveillance for understanding the transmission of M. tuberculosis and highlights the urgency of interventions to interrupt transmission of highly drug-resistant M. tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.