Abstract:We propose and experimentally demonstrate that, contrary to what was thought up to now, an efficient BB84 operation is feasible using the double phase modulator (PM-PM) configuration in frequency-coded quantum key distribution systems without dispersion compensation. This is achieved by exploiting the chromatic dispersion provided by the fiber linking Alice and Bob. Thus, we refer to this system as dispersion supported or as the DS BB84 PM-PM configuration.
In this paper we extend the analytical drift-diffusion model, or Hovel model, to model the electrical characteristics of solar cells incorporating a back mirror. We use a compact summation approach to derive modified optical generation functions in Homojunction solar cells, considering both coherent and incoherent reflections from the back reflector. These modified generation functions are then used to derive analytical formulae for the current-voltage characteristics of mirrored solar cells. We simulate the quantum efficiency of a simple GaAs np diode with a planar gold back reflector, and compare the results with the standard Hovel model using a generation function given by the Beer-Lambert law. Finally, we use the model to simulate the performance of a real GaAs solar cell device fabricated using an epitaxial-lift-off procedure, demonstrating excellent agreement between the simulated and measured characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.