A set of three experiments evaluated 96 participants' ability to visually and haptically discriminate solid object shape. In the past, some researchers have found haptic shape discrimination to be substantially inferior to visual shape discrimination, while other researchers have found haptics and vision to be essentially equivalent. A primary goal of the present study was to understand these discrepant past findings and to determine the true capabilities of the haptic system. All experiments used the same task (same vs. different shape discrimination) and stimulus objects (James Gibson's "feelies" and a set of naturally shaped objects--bell peppers). However, the methodology varied across experiments. Experiment 1 used random 3-dimensional (3-D) orientations of the stimulus objects, and the conditions were full-cue (active manipulation of objects and rotation of the visual objects in depth). Experiment 2 restricted the 3-D orientations of the stimulus objects and limited the haptic and visual information available to the participants. Experiment 3 compared restricted and full-cue conditions using random 3-D orientations. We replicated both previous findings in the current study. When we restricted visual and haptic information (and placed the stimulus objects in the same orientation on every trial), the participants' visual performance was superior to that obtained for haptics (replicating the earlier findings of Davidson et al. in Percept Psychophys 15(3):539-543, 1974). When the circumstances resembled those of ordinary life (e.g., participants able to actively manipulate objects and see them from a variety of perspectives), we found no significant difference between visual and haptic solid shape discrimination.
Two experiments evaluated the ability of younger and older adults to visually discriminate 3-D shape as a function of surface coherence. The coherence was manipulated by embedding the 3-D surfaces in volumetric noise (e.g., for a 55 % coherent surface, 55 % of the stimulus points fell on a 3-D surface, while 45 % of the points occupied random locations within the same volume of space). The 3-D surfaces were defined by static binocular disparity, dynamic binocular disparity, and motion. The results of both experiments demonstrated significant effects of age: Older adults required more coherence (tolerated volumetric noise less) for reliable shape discrimination than did younger adults. Motion-defined and static-binoculardisparity-defined surfaces resulted in similar coherence thresholds. However, performance for dynamic-binoculardisparity-defined surfaces was superior (i.e., the observers' surface coherence thresholds were lowest for these stimuli). The results of both experiments showed that younger and older adults possess considerable tolerance to the disrupting effects of volumetric noise; the observers could reliably discriminate 3-D surface shape even when 45 % of the stimulus points (or more) constituted noise.
A single experiment evaluated observers' ability to visually discriminate 3-D object shape, where the 3-D structure was defined by motion, texture, Lambertian shading, and occluding contours. The observers' vision was degraded to varying degrees by blurring the experimental stimuli, using 2.0-, 2.5-, and 3.0-diopter convex lenses. The lenses reduced the observers' acuity from -0.091 LogMAR (in the no-blur conditions) to 0.924 LogMAR (in the conditions with the most blur; 3.0-diopter lenses). This visual degradation, although producing severe reductions in visual acuity, had only small (but significant) effects on the observers' ability to discriminate 3-D shape. The observers' shape discrimination performance was facilitated by the objects' rotation in depth, regardless of the presence or absence of blur. Our results indicate that accurate global shape discrimination survives a considerable amount of retinal blur.
Past research has provided evidence that older adults have more difficulty than younger adults in discriminating small differences in lifted weight (i.e., the difference threshold for older adults is higher than that of younger adults). Given this result, one might expect that older adults would demonstrate similar impairments in weight ratio perception (a suprathreshold judgment) compared to younger adults. The current experiment compared the abilities of younger and older adults to perceive weight ratios. On any given trial, participants lifted two objects in succession and were asked to provide an estimate of the objects’ weight ratio (the weight of the heavier object relative to the lighter). The results showed that while the older participants’ weight ratio estimates were as reliable as those of the younger participants, they were significantly less accurate: the older participants frequently perceived the weight ratios to be much higher than they actually were.
Successful navigation in the world requires effective visuospatial processing. Unfortunately, older adults have many visuospatial deficits, which can have severe real-world consequences. While some of these age effects are well documented, some others, such as the perception of depth from motion parallax, are poorly understood. Depth perception from motion parallax requires intact retinal image motion and pursuit eye movement processing. Decades of research have shown that both motion processing and pursuit eye movements are affected by age; it follows that older adults may also be less sensitive to depth from motion parallax. The goals of the current study were to characterize motion parallax depth thresholds in older adults, and to explain older adults’ sensitivity to depth from motion parallax in terms of motion and pursuit deficits. Younger and older adults’ motion thresholds and pursuit accuracy were measured. Observers’ depth thresholds across several different stimulus conditions were measured as well. Older adults had higher motion thresholds and less accurate pursuit, compared to younger adults. They were also less sensitive to depth from motion parallax, at slow and moderate pursuit speeds. Although older adults had higher motion thresholds than younger adults, they used available motion signals optimally, and age differences in motion processing could not account for older adults’ increased depth thresholds. Rather, these age effects can be explained by changes in older adults’ pursuit signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.