Alterations in oxidative metabolism are considered to be one of the major contributors to Huntington's disease (HD) pathogenesis. However, existing data about oxidative metabolism in HD are contradictory. Here, we investigated the effect of mutant huntingtin (mHtt) on oxidative metabolism in YAC128 mice. Both mHtt and wild-type huntingtin (Htt) were associated with mitochondria and the amount of bound Htt was four-times higher than the amount of bound mHtt. Percoll gradient-purified brain synaptic and non-synaptic mitochondria as well as unpurified brain, liver and heart mitochondria, isolated from 2- and 10-month-old YAC128 mice and age-matched WT littermates had similar respiratory rates. There was no difference in mitochondrial membrane potential or ADP and ATP levels. Expression of selected nuclear-encoded mitochondrial proteins in 2- and 10-month-old YAC128 and WT mice was similar. Cultured striatal and cortical neurons from YAC128 and WT mice had similar respiratory and glycolytic activities as measured with Seahorse XF24 analyzer in medium containing 10 mm glucose and 15 mm pyruvate. In the medium with 2.5 mm glucose, YAC128 striatal neurons had similar respiration, but slightly lower glycolytic activity. Striatal neurons had lower maximal respiration compared with cortical neurons. In vivo experiments with YAC128 and WT mice showed similar O2 consumption, CO2 release, physical activity, food consumption and fasted blood glucose. However, YAC128 mice were heavier and had more body fat compared with WT mice. Overall, our data argue against respiratory deficiency in YAC128 mice and, consequently, suggest that mitochondrial respiratory dysfunction is not essential for HD pathogenesis.
We investigated Ca2+ handling in isolated brain synaptic and nonsynaptic mitochondria and in cultured striatal neurons from the YAC128 mouse model of Huntington’s disease (HD). Both synaptic and nonsynaptic mitochondria from 2- and 12-month-old YAC128 mice had larger Ca2+ uptake capacity than mitochondria from YAC18 and wild-type FVB/NJ mice. Synaptic mitochondria from 12-month-old YAC128 mice had further augmented Ca2+ capacity compared with mitochondria from 2-month-old YAC128 mice and age-matched YAC18 and FVB/NJ mice. This increase in Ca2+ uptake capacity correlated with an increase in the amount of mutant huntingtin protein (mHtt) associated with mitochondria from 12-month-old YAC128 mice. We speculate that this may happen due to mHtt-mediated sequestration of free fatty acids thereby increasing resistance of mitochondria to Ca2+-induced damage. In experiments with striatal neurons from YAC128 and FVB/NJ mice, brief exposure to 25 or 100μM glutamate produced transient elevations in cytosolic Ca2+ followed by recovery to near resting levels. Following recovery of cytosolic Ca2+, mitochondrial depolarization with FCCP produced comparable elevations in cytosolic Ca2+, suggesting similar Ca2+ release and, consequently, Ca2+ loads in neuronal mitochondria from YAC128 and FVB/NJ mice. Together, our data argue against a detrimental effect of mHtt on Ca2+ handling in brain mitochondria of YAC128 mice.
Background: NMDA receptor and Na ϩ /Ca 2ϩ exchanger are involved in glutamate-induced calcium dysregulation in neurons. Results: CRMP2 interacts with and modulates activity of the NMDA receptor and Na ϩ /Ca 2ϩ exchanger. Conclusion: CRMP2 is involved in regulation of Ca 2ϩ homeostasis in neurons exposed to glutamate. Significance: CRMP2 interaction with NMDA receptor and Na ϩ /Ca 2ϩ exchanger affects their activity and is important for glutamate-induced Ca 2ϩ dysregulation.
Background: N-type Ca 2ϩ channels (CaV2.2) are clinically validated targets for chronic pain. Results: Two peptides from CaV2.2 and CaV1.2 perturb binding to a regulatory protein, CRMP2, inhibit calcium influx, and attenuate mechanical hyperalgesia in a rodent model of drug-induced chronic pain. Conclusion: Ca 2ϩ channel peptides block drug-and nerve injury-induced chronic pain. Significance: Ca 2ϩ channel peptide therapeutics can be useful in mitigating chronic pain.
Background
Air pollution is linked to increased emergency room visits for headache and migraine patients frequently cite chemicals or odors as headache triggers, but the association between air pollutants and headache is not well-understood. We previously reported that nasal administration of environmental irritants acutely increases meningeal blood flow via a TRPA1-dependent mechanism, involving the trigeminovascular system. Here, we examine whether chronic environmental irritant exposure sensitizes the trigeminovascular system.
Methods
Male rats were exposed to acrolein, a TRPA1 agonist, or room air by inhalation for 4 days prior to meningeal blood flow measurements. Some animals were injected daily with a TRPA1 antagonist, AP-18 or vehicle prior to inhalation exposure. Trigeminal ganglia were isolated following blood flow measurements for immunocytochemistry and/or qPCR determination of TRPV1, TRPA1 and CGRP levels.
Results
Acrolein inhalation exposure potentiated blood flow responses to both TRPA1 and TRPV1 agonists compared to room air. Acrolein exposure did not alter TRPV1 or TRPA1 mRNA levels or TRPV1 or CGRP immunoreactive cell counts in the trigeminal ganglion. Acrolein sensitization of trigeminovascular responses to a TRPA1 agonist was attenuated by pre-treatment with AP-18.
Interpretation
These results suggest trigeminovascular sensitization as a mechanism for enhanced headache susceptibility after chemical exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.