[1] Uptake of half of the fossil fuel CO 2 into the ocean causes gradual seawater acidification. This has been shown to slow down calcification of major calcifying groups, such as corals, foraminifera, and coccolithophores. Here we show that two of the most productive marine calcifying species, the coccolithophores Coccolithus pelagicus and Calcidiscus leptoporus, do not follow the CO 2 -related calcification response previously found. In batch culture experiments, particulate inorganic carbon (PIC) of C. leptoporus changes with increasing CO 2 concentration in a nonlinear relationship. A PIC optimum curve is obtained, with a maximum value at present-day surface ocean pCO 2 levels ($360 ppm CO 2 ). With particulate organic carbon (POC) remaining constant over the range of CO 2 concentrations, the PIC/POC ratio also shows an optimum curve. In the C. pelagicus cultures, neither PIC nor POC changes significantly over the CO 2 range tested, yielding a stable PIC/POC ratio. Since growth rate in both species did not change with pCO 2 , POC and PIC production show the same pattern as POC and PIC. The two investigated species respond differently to changes in the seawater carbonate chemistry, highlighting the need to consider species-specific effects when evaluating whole ecosystem responses. Changes of calcification rate (PIC production) were highly correlated to changes in coccolith morphology. Since our experimental results suggest altered coccolith morphology (at least in the case of C. leptoporus) in the geological past, coccoliths originating from sedimentary records of periods with different CO 2 levels were analyzed. Analysis of sediment samples was performed on six cores obtained from locations well above the lysocline and covering a range of latitudes throughout the Atlantic Ocean. Scanning electron micrograph analysis of coccolith morphologies did not reveal any evidence for significant numbers of incomplete or malformed coccoliths of C. pelagicus and C. leptoporus in last glacial maximum and Holocene sediments. The discrepancy between experimental and geological results might be explained by adaptation to changing carbonate chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.