Supervised deep learning offers great promise to automate analysis of medical images from segmentation to diagnosis. However, their performance highly relies on the quality and quantity of the data annotation. Meanwhile, curating large annotated datasets for medical images requires a high level of expertise, which is time-consuming and expensive. Recently, to quench the thirst for large data sets with high-quality annotation, self-supervised learning (SSL) methods using unlabeled domain-specific data, have attracted attention. Therefore, designing an SSL method that relies on minimal quantities of labeled data has far-reaching significance in medical images. This paper investigates the feasibility of deploying the Masked Autoencoder for SSL (SSL-MAE) of TransUNet, for segmenting bony regions from children's wrist ultrasound scans. We found that changing the embedding and loss function in SSL-MAE can produce better downstream results compared to the original SSL-MAE. In addition, we determined that only pretraining TransUNet embedding and encoder with SSL-MAE does not work as well as TransUNet without SSL-MAE pretraining on downstream segmentation tasks.
Wrist trauma is common in children and generally requires radiography for exclusion of fractures, subjecting children to radiation and long wait times in the emergency department. Ultrasound (US) has potential to be a safer, faster diagnostic tool. This study aimed to determine how reliably US could detect distal radius fractures in children, to contrast the accuracy of 2DUS to 3DUS, and to assess the utility of artificial intelligence for image interpretation. 127 children were scanned with 2DUS and 3DUS on the affected wrist. US scans were then read by 7 blinded human readers and an AI model. With radiographs used as the gold standard, expert human readers obtained a mean sensitivity of 0.97 and 0.98 for 2DUS and 3DUS respectively. The AI model sensitivity was 0.91 and 1.00 for 2DUS and 3DUS respectively. Study data suggests that 2DUS is comparable to 3DUS and AI diagnosis is comparable to human experts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.