Visual and proprioceptive information is used differently at different phases of a reach. The time at which a target perturbation occurs during a reach therefore has a significant impact on how an individual can compensate for this perturbation though online control. With healthy ageing, there are notable changes to both sensory and motor control that impact motor performance. However, how the online control process changes with age is not yet fully understood. We used a target perturbation paradigm and manipulated the time at which a target perturbation occurred during the reach to investigate how healthy ageing impacts sensorimotor control. We measured how the latency of the correction and the magnitude of the corrective response changed with perturbation time and quantified the difference across groups using a percentage difference measure. For both groups, online corrections to early perturbations were more easily accounted for than those to late perturbations, despite late perturbations eliciting faster correction latencies. While there was no group difference in accuracy, older participants were slower overall and produced a correction to a change in target location proportionally less often despite similar correction latencies. We speculate that the differences in the time during the reach that the correction is first identified may explain the differences in correction latencies observed between the perturbation time conditions.
Goal-directed movements rely on the integration of both visual and motor information, especially during the online control of movement, to fluidly and flexibly control coordinated action. Eye-hand coordination typically plays an important role in goal-directed movements. As people age, various aspects of motor control and visual performance decline (Haegerstrom-Portnoy, Schneck, & Brabyn, 1999; Seidler et al., 2010), including an increase in saccade latencies (Munoz, Broughton, Goldring, & Armstrong, 1998). However, there is limited insight into how age-related changes in saccadic performance impact eye-hand coordination during online control. We investigated this question through the use of a target perturbation paradigm. Older and younger participants completed a perturbation task where target perturbations could occur either early (0 ms) or later (200 ms) after reach onset. We analyzed reach correction latencies and the frequency of the reach correction, coupled with analyses of saccades across all stages of movement. Older participants had slower correction latencies and initiated corrections less frequently compared to younger participants, with this trend being exacerbated in the later (200 ms) target perturbation condition. Older participants also produced slower saccade latencies toward both the initial target and the perturbed target. For trials in which a correction occurred to a late perturbation, touch responses were more accurate when there was more time between the saccade landing and the touch. Altogether, our results suggest that these age-related effects may be due to the delayed acquisition of visual and oculomotor information used to inform the reaching movement, stemming from the increase in saccade latencies before and after target perturbation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.