Visual and proprioceptive information is used differently at different phases of a reach. The time at which a target perturbation occurs during a reach therefore has a significant impact on how an individual can compensate for this perturbation though online control. With healthy ageing, there are notable changes to both sensory and motor control that impact motor performance. However, how the online control process changes with age is not yet fully understood. We used a target perturbation paradigm and manipulated the time at which a target perturbation occurred during the reach to investigate how healthy ageing impacts sensorimotor control. We measured how the latency of the correction and the magnitude of the corrective response changed with perturbation time and quantified the difference across groups using a percentage difference measure. For both groups, online corrections to early perturbations were more easily accounted for than those to late perturbations, despite late perturbations eliciting faster correction latencies. While there was no group difference in accuracy, older participants were slower overall and produced a correction to a change in target location proportionally less often despite similar correction latencies. We speculate that the differences in the time during the reach that the correction is first identified may explain the differences in correction latencies observed between the perturbation time conditions.