[1] Everglades freshwater marshes were once carbon sinks, but human-driven hydrologic changes have led to uncertainty about the current state of their carbon dynamics. To investigate the effect of hydrology on CO 2 exchange, we used eddy covariance measurements for 2 years (2008)(2009) in marl (short-hydroperiod) and peat (long-hydroperiod) wetlands in Everglades National Park. The importance of site, season, and environmental drivers was evaluated using linear and nonlinear modeling, and a novel method was used to test for temporally lagged patterns in the data. Unexpectedly, the long-hydroperiod peat marsh was a small CO 2 source (19.9 g C m À2 from July to December 2008 and 80.0 g C m À2 in 2009), and at no time over the study period was it a strong sink. Contrary to previous research suggesting high productivity rates from a short-hydroperiod marsh, we estimated that the marl site was a small CO 2 sink in 2008 (net ecosystem exchange [NEE] = À78.8 g C m À2 ) and was near neutral for carbon balance in 2009. In addition, both sites had relatively low gross ecosystem exchange (GEE) over the 2 years of this study. The two sites showed similar responses for NEE versus air temperature, ecosystem respiration (R eco ) versus air temperature, and R eco versus water depth, although the magnitude of the responses differed. We saw small lags (30 min in most cases) between carbon fluxes and environmental drivers. This study is foundational for understanding the carbon balance of these ecosystems prior to implementation of the planned Everglades restoration of historical water flow that will likely alter the future trajectory of the carbon dynamics of the Everglades as a whole.
Although wetlands are among the world's most productive ecosystems, little is known of long-term CO 2 exchange in tropical and subtropical wetlands. The Everglades is a highly managed wetlands complex occupying >6000 km 2 in south Florida. This ecosystem is oligotrophic, but extremely high rates of productivity have been previously reported. To evaluate CO 2 exchange and its response to seasonality (dry vs. wet season) in the Everglades, an eddy covariance tower was established in a short-hydroperiod marl marsh. Rates of net ecosystem exchange and ecosystem respiration were small year-round and declined in the wet season relative to the dry season. Inundation reduced macrophyte CO 2 uptake, substantially limiting gross ecosystem production. While light and air temperature exerted the primary controls on net ecosystem exchange and ecosystem respiration in the dry season, inundation weakened these relationships. The ecosystem shifted from a CO 2 sink in the dry season to a CO 2 source in the wet season; however, the marsh was a small carbon sink on an annual basis. Net ecosystem production, ecosystem respiration, and gross ecosystem production were -49.9, 446.1 and 496.0 g C m -2 year -1 , respectively. Unexpectedly low CO 2 flux rates and annual production distinguish the Everglades from many other wetlands. Nonetheless, impending changes in water management are likely to alter the CO 2 balance of this wetland and may increase the source strength of these extensive short-hydroperiod wetlands.3
Land-use change in the Sarapiquí region of Costa Rica has resulted in a fragmented forest landscape with abrupt edges between forest and pasture. Forest responses to edge effects vary widely and can significantly affect ecosystem integrity. Our objective was to examine forest structure at 20+ yr old forest-pasture edges in Sarapiquí. Three transects with 0.095-ha plots at seven distances from forest edges were established in each of six forest patches. Stem density, basal area, and aboveground biomass in trees and palms ≥ 10-cm diameter at breast height were measured in all plots. In addition, hemispherical photographs were taken to determine leaf area index, understory light availability, and percent canopy openness. Linear mixed-effects models showed significantly higher tree stem density at forest edges, relative to interiors, a pattern reflected by increased stem density, basal area, and aboveground biomass in small diameter trees (≤ 20 cm) growing near edges. No differences in total tree basal area, aboveground biomass, or hemispherical photograph-derived parameters were detected across the forest edge to interior gradient. The recruitment of small diameter trees following edge creation has contributed to the development of dense vegetation at the forest edge and has aided in the maintenance of similar tree basal area and aboveground biomass between edge and interior environments. These data reflect on the robustness of forest edges in Sarapiquí, a characteristic that will likely minimize future detrimental edge effects and promote a number of high-value environmental services in these forests.Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.